These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35782049)

  • 1. Understanding the Neural Basis of Prospective Memory Using Functional Near-Infrared Spectroscopy.
    Koo YW; Neumann DL; Ownsworth T; Yeung MK; Shum DHK
    Front Hum Neurosci; 2022; 16():905491. PubMed ID: 35782049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal cortex activation during working memory task in schizophrenia: A fNIRS study.
    Kumar V; Nichenmetla S; Chhabra H; Sreeraj VS; Rao NP; Kesavan M; Varambally S; Venkatasubramanian G; Gangadhar BN
    Asian J Psychiatr; 2021 Feb; 56():102507. PubMed ID: 33388563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load-dependent relationships between frontal fNIRS activity and performance: A data-driven PLS approach.
    Meidenbauer KL; Choe KW; Cardenas-Iniguez C; Huppert TJ; Berman MG
    Neuroimage; 2021 Apr; 230():117795. PubMed ID: 33503483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prefrontal activation and pupil dilation during n-back task performance: A combined fNIRS and pupillometry study.
    Yeung MK; Lee TL; Han YMY; Chan AS
    Neuropsychologia; 2021 Aug; 159():107954. PubMed ID: 34252415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assess BA10 activity in slide-based and immersive virtual reality prospective memory task using functional near-infrared spectroscopy (fNIRS).
    Dong D; Wong LKF; Luo Z
    Appl Neuropsychol Adult; 2019; 26(5):465-471. PubMed ID: 29547004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study.
    Di Rosa E; Brigadoi S; Cutini S; Tarantino V; Dell'Acqua R; Mapelli D; Braver TS; Vallesi A
    Neuroimage; 2019 Nov; 202():116062. PubMed ID: 31369810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective memory and working memory: asymmetrical effects during frontal lobe TMS stimulation.
    Basso D; Ferrari M; Palladino P
    Neuropsychologia; 2010 Sep; 48(11):3282-90. PubMed ID: 20637788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Functional Near-Infrared Spectroscopy Study of State Anxiety and Auditory Working Memory Load.
    Tseng YL; Lu CF; Wu SM; Shimada S; Huang T; Lu GY
    Front Hum Neurosci; 2018; 12():313. PubMed ID: 30131684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in prefrontal cortex activity based on difficulty in a working memory task using near-infrared spectroscopy.
    Lucas I; Urieta P; Balada F; Blanco E; Aluja A
    Behav Brain Res; 2020 Aug; 392():112722. PubMed ID: 32479853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Validation of a Portable Functional NIRS System for Assessing Mental Workload.
    Saikia MJ; Besio WG; Mankodiya K
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Changes in Frontal Lobe Hemodynamic Response in Individual Adults With Developmental Language Disorder Following HD tDCS Enhanced Phonological Working Memory Training: An fNIRS Feasibility Study.
    Berglund-Barraza A; Tian F; Basak C; Hart J; Evans JL
    Front Hum Neurosci; 2020; 14():362. PubMed ID: 33132869
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes. Part II: A Replication Study in Children on Sensitivity and Mental-Ability-Induced Differences in Functional Activation.
    Witmer JS; Aeschlimann EA; Metz AJ; Troche SJ; Rammsayer TH
    Brain Sci; 2018 Aug; 8(8):. PubMed ID: 30103538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroimaging and cognition using functional near infrared spectroscopy (fNIRS) in multiple sclerosis.
    Stojanovic-Radic J; Wylie G; Voelbel G; Chiaravalloti N; DeLuca J
    Brain Imaging Behav; 2015 Jun; 9(2):302-11. PubMed ID: 24916919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Executive n-back tasks for the neuropsychological assessment of working memory.
    León-Domínguez U; Martín-Rodríguez JF; León-Carrión J
    Behav Brain Res; 2015 Oct; 292():167-73. PubMed ID: 26068585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans.
    Witmer JS; Aeschlimann EA; Metz AJ; Troche SJ; Rammsayer TH
    Brain Sci; 2018 Apr; 8(4):. PubMed ID: 29621179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of working memory load on frontal connectivity in children with autism spectrum disorder: a fNIRS study.
    Han YMY; Chan MC; Chan MMY; Yeung MK; Chan AS
    Sci Rep; 2022 Jan; 12(1):1522. PubMed ID: 35087126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.
    Yoon JH; Grandelis A; Maddock RJ
    J Neurosci; 2016 Nov; 36(46):11788-11794. PubMed ID: 27852785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Working Memory of Patients with Mild Cognitive Impairment due to Brain Trauma Based on fNIRS.
    Chang F; Li HZ; Zhang SY; Chen C; Liu C; Fan HY; Xing Y; Zahng QT; Cai WX
    Fa Yi Xue Za Zhi; 2020 Feb; 36(1):52-60. PubMed ID: 32250079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct bilateral prefrontal activity patterns associated with the qualitative aspect of working memory characterized by individual sensory modality dominance.
    Matsumoto M; Sakurada T; Yamamoto SI
    PLoS One; 2020; 15(8):e0238235. PubMed ID: 32845925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denoising of neuronal signal from mixed systemic low-frequency oscillation using peripheral measurement as noise regressor in near-infrared imaging.
    Sutoko S; Chan YL; Obata A; Sato H; Maki A; Numata T; Funane T; Atsumori H; Kiguchi M; Tang TB; Li Y; Frederick BD; Tong Y
    Neurophotonics; 2019 Jan; 6(1):015001. PubMed ID: 30662924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.