These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 35782502)

  • 61. High-throughput droplet-based microfluidics for directed evolution of enzymes.
    Chiu FWY; Stavrakis S
    Electrophoresis; 2019 Nov; 40(21):2860-2872. PubMed ID: 31433062
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.
    Chen Q; Chen D; Wu J; Lin JM
    Biomicrofluidics; 2016 Nov; 10(6):064115. PubMed ID: 27990217
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microgel capsules tailored by droplet-based microfluidics.
    Seiffert S
    Chemphyschem; 2013 Feb; 14(2):295-304. PubMed ID: 23225762
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bioinspired Microstructure Platform for Modular Cell-Laden Microgel Fabrication.
    Liu H; Li M; Huang G; Li J; Xu F
    Macromol Biosci; 2021 Sep; 21(9):e2100110. PubMed ID: 34216432
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Droplet microfluidics-based biomedical microcarriers.
    Shao C; Chi J; Shang L; Fan Q; Ye F
    Acta Biomater; 2022 Jan; 138():21-33. PubMed ID: 34718181
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conformal single cell hydrogel coating with electrically induced tip streaming of an AC cone.
    Pan Z; Bui L; Yadav V; Fan F; Chang HC; Hanjaya-Putra D
    Biomater Sci; 2021 May; 9(9):3284-3292. PubMed ID: 33949367
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform.
    Seeto WJ; Tian Y; Pradhan S; Kerscher P; Lipke EA
    Small; 2019 Nov; 15(47):e1902058. PubMed ID: 31468632
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Building Dynamic Cellular Machineries in Droplet-Based Artificial Cells with Single-Droplet Tracking and Analysis.
    Sun M; Li Z; Wang S; Maryu G; Yang Q
    Anal Chem; 2019 Aug; 91(15):9813-9818. PubMed ID: 31284720
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator.
    Lian M; Collier CP; Doktycz MJ; Retterer ST
    Biomicrofluidics; 2012; 6(4):44108. PubMed ID: 24198865
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microfluidic Templating of Spatially Inhomogeneous Protein Microgels.
    Xu Y; Jacquat RPB; Shen Y; Vigolo D; Morse D; Zhang S; Knowles TPJ
    Small; 2020 Aug; 16(32):e2000432. PubMed ID: 32529798
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering.
    Weng L; Spoonamore JE
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671786
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS.
    Brower KK; Khariton M; Suzuki PH; Still C; Kim G; Calhoun SGK; Qi LS; Wang B; Fordyce PM
    Anal Chem; 2020 Oct; 92(19):13262-13270. PubMed ID: 32900183
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An Ultrahigh-throughput Microfluidic Platform for Single-cell Genome Sequencing.
    Demaree B; Weisgerber D; Lan F; Abate AR
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889211
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-step processing of single cells using semi-permeable capsules.
    Leonaviciene G; Leonavicius K; Meskys R; Mazutis L
    Lab Chip; 2020 Oct; 20(21):4052-4062. PubMed ID: 33006353
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system.
    Yuan H; Tu R; Tong X; Lin Y; Zhang Y; Wang Q
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259275
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers.
    Kaushik AM; Hsieh K; Wang TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1522. PubMed ID: 29797414
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.