These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35782731)
41. Influence of modulated structural dynamics on the kinetics of alpha-chymotrypsin catalysis. Insights through chemical glycosylation, molecular dynamics and domain motion analysis. Solá RJ; Griebenow K FEBS J; 2006 Dec; 273(23):5303-19. PubMed ID: 17076704 [TBL] [Abstract][Full Text] [Related]
42. Chemical approaches to perturb, profile, and perceive glycans. Agard NJ; Bertozzi CR Acc Chem Res; 2009 Jun; 42(6):788-97. PubMed ID: 19361192 [TBL] [Abstract][Full Text] [Related]
43. Effects of different media supplements on the production of an active recombinant plant peroxidase in a Pichia pastoris Δoch1 strain. Gmeiner C; Spadiut O Bioengineered; 2015; 6(3):175-8. PubMed ID: 25837321 [TBL] [Abstract][Full Text] [Related]
44. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation. Lu D; Yang C; Liu Z J Phys Chem B; 2012 Jan; 116(1):390-400. PubMed ID: 22118044 [TBL] [Abstract][Full Text] [Related]
45. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902 [TBL] [Abstract][Full Text] [Related]
46. Investigating the structural and functional effects of mutating Asn glycosylation sites of horseradish peroxidase to Asp. Asad S; Khajeh K; Ghaemi N Appl Biochem Biotechnol; 2011 Jun; 164(4):454-63. PubMed ID: 21193964 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the avian coronavirus spike protein reveals heterogeneity in the glycans present. Stevenson-Leggett P; Armstrong S; Keep S; Britton P; Bickerton E J Gen Virol; 2021 Aug; 102(8):. PubMed ID: 34424155 [TBL] [Abstract][Full Text] [Related]
48. NMR study of the active site of resting state and cyanide-inhibited lignin peroxidase from Phanerochaete chrysosporium. Comparison with horseradish peroxidase. de Ropp JS; La Mar GN; Wariishi H; Gold MH J Biol Chem; 1991 Aug; 266(23):15001-8. PubMed ID: 1869537 [TBL] [Abstract][Full Text] [Related]
49. Structural alterations of sugar chains in urine fibronectin from bladder cancer patients and its enzymatic mechanism. Guo JM; Zhang XY; Chen HL; Wang GM; Zhang YK J Cancer Res Clin Oncol; 2001 Aug; 127(8):512-9. PubMed ID: 11501752 [TBL] [Abstract][Full Text] [Related]
50. Molecular dynamics simulations of lignin peroxidase in solution. Francesca Gerini M; Roccatano D; Baciocchi E; Di Nola A Biophys J; 2003 Jun; 84(6):3883-93. PubMed ID: 12770894 [TBL] [Abstract][Full Text] [Related]
51. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis. Asad S; Dastgheib SM; Khajeh K Biotechnol Appl Biochem; 2016 Nov; 63(6):789-794. PubMed ID: 26331237 [TBL] [Abstract][Full Text] [Related]
52. Thermosonication inactivation of horseradish peroxidase with different frequency modes: Effect on activity, structure, morphology and mechanisms. Guo Y; Wu B; Guo X; Liu D; Qiu C; Ma H Food Chem; 2022 Aug; 384():132537. PubMed ID: 35219992 [TBL] [Abstract][Full Text] [Related]
53. Buffer-anion-dependent Ca2+ leaching from horseradish peroxidase at low pH. Wright PJ; English AM J Biol Inorg Chem; 2001 Apr; 6(4):348-58. PubMed ID: 11372194 [TBL] [Abstract][Full Text] [Related]
54. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d Wang C; Zhang P; Jin W; Li L; Qiang S; Zhang Y; Huang L; Wang Z J Proteomics; 2017 Jan; 150():18-30. PubMed ID: 27585995 [TBL] [Abstract][Full Text] [Related]
55. The distribution of glycan structures in individual N-glycosylation sites in animal and plant glycoproteins. Yet MG; Wold F Arch Biochem Biophys; 1990 May; 278(2):356-64. PubMed ID: 2327792 [TBL] [Abstract][Full Text] [Related]
56. N-Glycosylation Enhances Conformational Flexibility of Protein Disulfide Isomerase Revealed by Microsecond Molecular Dynamics and Markov State Modeling. Weiß RG; Losfeld ME; Aebi M; Riniker S J Phys Chem B; 2021 Aug; 125(33):9467-9479. PubMed ID: 34379416 [TBL] [Abstract][Full Text] [Related]
57. Improving the Performance of Horseradish Peroxidase by Site-Directed Mutagenesis. Humer D; Spadiut O Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791559 [TBL] [Abstract][Full Text] [Related]
58. A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. Hiner AN; Hernández-Ruíz J; García-Cánovas F; Smith AT; Arnao MB; Acosta M Eur J Biochem; 1995 Dec; 234(2):506-12. PubMed ID: 8536696 [TBL] [Abstract][Full Text] [Related]
59. Glycosylator: a Python framework for the rapid modeling of glycans. Lemmin T; Soto C BMC Bioinformatics; 2019 Oct; 20(1):513. PubMed ID: 31640540 [TBL] [Abstract][Full Text] [Related]
60. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. Smith AT; Santama N; Dacey S; Edwards M; Bray RC; Thorneley RN; Burke JF J Biol Chem; 1990 Aug; 265(22):13335-43. PubMed ID: 2198290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]