BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35782739)

  • 1. Analysis of the galactomannan binding ability of β-mannosidases, BtMan2A and CmMan5A, regarding their activity and synergism with a β-mannanase.
    Malgas S; Thoresen M; Moses V; Prinsloo E; Susan van Dyk J; Pletschke BI
    Comput Struct Biotechnol J; 2022; 20():3140-3150. PubMed ID: 35782739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A.
    Tailford LE; Money VA; Smith NL; Dumon C; Davies GJ; Gilbert HJ
    J Biol Chem; 2007 Apr; 282(15):11291-9. PubMed ID: 17287210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates.
    Malgas S; van Dyk SJ; Pletschke BI
    Enzyme Microb Technol; 2015 Mar; 70():1-8. PubMed ID: 25659626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo characterization of genes involved in mannan degradation in Neurospora crassa.
    Hsu Y; Arioka M
    Fungal Genet Biol; 2020 Nov; 144():103441. PubMed ID: 32777385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ
    Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation.
    Song Y; Sun W; Fan Y; Xue Y; Liu D; Ma C; Liu W; Mosher W; Luo X; Li Z; Ma W; Zhang T
    J Agric Food Chem; 2018 Oct; 66(42):11055-11063. PubMed ID: 30351049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implication of a galactomannan-binding GH2 β-mannosidase in mannan utilization by Caldicellulosiruptor bescii.
    Liang D; Gong L; Yao B; Xue X; Qin X; Ma R; Luo H; Xie X; Su X
    Biochem Biophys Res Commun; 2015 Nov; 467(2):334-40. PubMed ID: 26433124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and properties of beta-mannanases I and II from the germinated seeds of Trifolium repens. Mode of galactomannan degradation in vitro.
    Villarroya H; Williams J; Dey P; Villarroya S; Petek F
    Biochem J; 1978 Dec; 175(3):1079-87. PubMed ID: 33664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical analyses of a novel thermostable GH5 endo β-1,4-mannanase with minor β-1,4-glucosidic cleavage activity from Bacillus sp. KW1 and its synergism with a commercial α-galactosidase on galactomannan hydrolysis.
    Chen X; Wang X; Liu Y; Zhang R; Zhang L; Zhan R; Wang S; Wang K
    Int J Biol Macromol; 2021 Jan; 166():778-788. PubMed ID: 33144255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes.
    Morrill J; Kulcinskaja E; Sulewska AM; Lahtinen S; Stålbrand H; Svensson B; Abou Hachem M
    BMC Biochem; 2015 Nov; 16():26. PubMed ID: 26558435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Glycoside Hydrolase Family 113 Endo-β-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family.
    Xia W; Lu H; Xia M; Cui Y; Bai Y; Qian L; Shi P; Luo H; Yao B
    Appl Environ Microbiol; 2016 May; 82(9):2718-2727. PubMed ID: 26921423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How substrate subsites in GH26 endo-mannanase contribute towards mannan binding.
    Kaira GS; Kapoor M
    Biochem Biophys Res Commun; 2019 Mar; 510(3):358-363. PubMed ID: 30717976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel β-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans.
    Shimizu M; Kaneko Y; Ishihara S; Mochizuki M; Sakai K; Yamada M; Murata S; Itoh E; Yamamoto T; Sugimura Y; Hirano T; Takaya N; Kobayashi T; Kato M
    J Biol Chem; 2015 Nov; 290(46):27914-27. PubMed ID: 26385921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A.
    Dias FM; Vincent F; Pell G; Prates JA; Centeno MS; Tailford LE; Ferreira LM; Fontes CM; Davies GJ; Gilbert HJ
    J Biol Chem; 2004 Jun; 279(24):25517-26. PubMed ID: 15014076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactomannan Catabolism Conferred by a Polysaccharide Utilization Locus of Bacteroides ovatus: ENZYME SYNERGY AND CRYSTAL STRUCTURE OF A β-MANNANASE.
    Bågenholm V; Reddy SK; Bouraoui H; Morrill J; Kulcinskaja E; Bahr CM; Aurelius O; Rogers T; Xiao Y; Logan DT; Martens EC; Koropatkin NM; Stålbrand H
    J Biol Chem; 2017 Jan; 292(1):229-243. PubMed ID: 27872187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana.
    Wang Y; Vilaplana F; Brumer H; Aspeborg H
    Planta; 2014 Mar; 239(3):653-65. PubMed ID: 24327260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase.
    Malgas S; van Dyk JS; Pletschke BI
    World J Microbiol Biotechnol; 2015 Aug; 31(8):1167-75. PubMed ID: 26026279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme.
    Nascimento AS; Muniz JR; Aparício R; Golubev AM; Polikarpov I
    FEBS J; 2014 Sep; 281(18):4165-78. PubMed ID: 24975648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans.
    von Freiesleben P; Spodsberg N; Blicher TH; Anderson L; Jørgensen H; Stålbrand H; Meyer AS; Krogh KB
    Enzyme Microb Technol; 2016 Feb; 83():68-77. PubMed ID: 26777252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of a β-mannanase from
    Li YX; Yi P; Yan QJ; Qin Z; Liu XQ; Jiang ZQ
    Biotechnol Biofuels; 2017; 10():143. PubMed ID: 28588644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.