These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35782961)

  • 1. Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles.
    Farokhirad S; Kandy SK; Tsourkas A; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    Adv Mater Interfaces; 2021 Dec; 8(23):. PubMed ID: 35782961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of multivalent binding of functionalized nanoparticles to membrane surface reveals the importance of membrane entropy and nanoparticle entropy in adhesion of flexible nanoparticles.
    Farokhirad S; Bradley RP; Radhakrishnan R
    Soft Matter; 2019 Dec; 15(45):9271-9286. PubMed ID: 31670338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow.
    Farokhirad S; Ranganathan A; Myerson J; Muzykantov VR; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    Nanoscale; 2019 Apr; 11(14):6916-6928. PubMed ID: 30912772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
    Fleischer CC; Payne CK
    Acc Chem Res; 2014 Aug; 47(8):2651-9. PubMed ID: 25014679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation.
    Zern BJ; Chacko AM; Liu J; Greineder CF; Blankemeyer ER; Radhakrishnan R; Muzykantov V
    ACS Nano; 2013 Mar; 7(3):2461-9. PubMed ID: 23383962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles.
    He J; Pang W; Gu B; Lin X; Ye J
    Nanoscale; 2022 Nov; 14(45):16902-16917. PubMed ID: 36342434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand Density Controls C-Type Lectin-Like Molecule-1 Receptor-Specific Uptake of Polymer Nanoparticles.
    Ackun-Farmmer MA; Alatise KL; Cross G; Benoit DSW
    Adv Biosyst; 2020 Nov; 4(11):e2000172. PubMed ID: 33073549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles.
    Zhang Y; Li L; Wang J
    Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands.
    Kakizawa Y; Lee JS; Bell B; Fahmy TM
    Acta Biomater; 2017 Jul; 57():136-145. PubMed ID: 28069499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Characteristics Important to Avidity Interactions of Multivalent Nanoparticles.
    Li MH; Zong H; Leroueil PR; Choi SK; Baker JR
    Bioconjug Chem; 2017 Jun; 28(6):1649-1657. PubMed ID: 28398751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valency and affinity control of aptamer-conjugated nanoparticles for selective cancer cell targeting.
    Woythe L; Porciani D; Harzing T; van Veen S; Burke DH; Albertazzi L
    J Control Release; 2023 Mar; 355():228-237. PubMed ID: 36642253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Presentation of Hyaluronic Acid Modulates Nanoparticle-Cell Association.
    Deiss-Yehiely E; Brucks SD; Boehnke N; Pickering AJ; Kiessling LL; Hammond PT
    Bioconjug Chem; 2022 Nov; 33(11):2065-2075. PubMed ID: 36282941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning cellular uptake of nanoparticles via ligand density: Contribution of configurational entropy.
    Zhang Y; Li L; Wang J
    Phys Rev E; 2021 Nov; 104(5-1):054405. PubMed ID: 34942735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.
    Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T
    Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-inspired design principles of nanoparticle-based bioagents.
    Yuan H; Huang C; Zhang S
    PLoS One; 2010 Oct; 5(10):e13495. PubMed ID: 20976064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.