These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 35783218)
1. Ultra-Tough Polylactide/Bromobutyl Rubber-Based Ionomer Blends Zhang X; Lu X; Huang D; Ding Y; Li J; Dai Z; Sun L; Li J; Wei X; Wei J; Li Y; Zhang K Front Chem; 2022; 10():923174. PubMed ID: 35783218 [TBL] [Abstract][Full Text] [Related]
2. Mechanical Properties, Crystallization Behaviors and Phase Morphologies of PLA/GTR Blends by Reactive Compatibilization. Shen H; Hu Y; Lin Z; Meng F; Ju G Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295162 [TBL] [Abstract][Full Text] [Related]
3. Modification of polylactide by poly(ionic liquid)-b-polylactide copolymer and bio-based ionomers: Excellent toughness, transparency and antibacterial property. Chen X; Ding Y; Li Y; Li J; Sun L; Wei X; Wei J; Zhang K; Wang H; Pan L; He S; Li Y Int J Biol Macromol; 2022 Nov; 221():1512-1526. PubMed ID: 35998852 [TBL] [Abstract][Full Text] [Related]
4. Improving the compatibility and toughness of sustainable polylactide/poly(butylene adipate-co-terephthalate) blends by incorporation of peroxide and diacrylate. Liu Y; Dou Q Int J Biol Macromol; 2024 Feb; 259(Pt 2):129355. PubMed ID: 38218295 [TBL] [Abstract][Full Text] [Related]
5. Poly (lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents. Jia S; Zhao L; Wang X; Chen Y; Pan H; Han L; Zhang H; Dong L; Zhang H Int J Biol Macromol; 2022 Mar; 201():662-675. PubMed ID: 35077751 [TBL] [Abstract][Full Text] [Related]
6. Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending. Hou AL; Qu JP Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052419 [TBL] [Abstract][Full Text] [Related]
7. Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends. Zhao X; Yu J; Wang X; Huang Z; Zhou W; Peng S Int J Biol Macromol; 2023 Oct; 250():126204. PubMed ID: 37573914 [TBL] [Abstract][Full Text] [Related]
8. Super tough poly(lactic acid) blends: a comprehensive review. Zhao X; Hu H; Wang X; Yu X; Zhou W; Peng S RSC Adv; 2020 Mar; 10(22):13316-13368. PubMed ID: 35492128 [TBL] [Abstract][Full Text] [Related]
9. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. Zhang K; Nagarajan V; Misra M; Mohanty AK ACS Appl Mater Interfaces; 2014 Aug; 6(15):12436-48. PubMed ID: 25029099 [TBL] [Abstract][Full Text] [Related]
10. Super-Tough PLA-Based Blends with Excellent Stiffness and Greatly Improved Thermal Resistance via Interphase Engineering. Mehrabi Mazidi M; Sharifi H; Razavi Aghjeh MK; Zare L; Khonakdar HA; Reuter U ACS Appl Mater Interfaces; 2023 May; 15(18):22445-22470. PubMed ID: 37115756 [TBL] [Abstract][Full Text] [Related]
11. Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends. Chang BP; Mohanty AK; Misra M RSC Adv; 2018 Aug; 8(49):27709-27724. PubMed ID: 35542721 [TBL] [Abstract][Full Text] [Related]
12. The effect of dynamic vulcanization on the morphology and biodegradability of super toughened poly(lactic acid)/unsaturated poly(ether-ester) blends. Yang R; Cai C; Chen Z; Zou G; Li J Int J Biol Macromol; 2023 Dec; 253(Pt 3):126790. PubMed ID: 37703967 [TBL] [Abstract][Full Text] [Related]
13. Study on miscibility, thermal properties, degradation behaviors, and toughening mechanism of poly(lactic acid)/poly (ethylene-butylacrylate-glycidyl methacrylate) blends. Zhao J; Pan H; Yang H; Bian J; Zhang H; Gao G; Dong L Int J Biol Macromol; 2020 Jan; 143():443-452. PubMed ID: 31790733 [TBL] [Abstract][Full Text] [Related]
14. Poly(ε-Caprolactone)/Poly(Lactic Acid) Blends Compatibilized by Peroxide Initiators: Comparison of Two Strategies. Przybysz-Romatowska M; Haponiuk J; Formela K Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963365 [TBL] [Abstract][Full Text] [Related]
15. High-Toughness Poly(Lactic Acid)/Starch Blends Prepared through Reactive Blending Plasticization and Compatibilization. Hu H; Xu A; Zhang D; Zhou W; Peng S; Zhao X Molecules; 2020 Dec; 25(24):. PubMed ID: 33339088 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effects of dual reactive compatibilizers for high-performance fully biodegradable polylactic acid/poly (butyleneadipate-co-terephthalate) composites. Wang X; Yu L; Cong F; Qiu Y; Song L; Jing Y; Chi W; Zhang W; Sun H; Zhang L; Gao J; Huang J; Gao G; Gao Y; Wang Y; Wang N Int J Biol Macromol; 2024 Nov; 281(Pt 4):136612. PubMed ID: 39414204 [TBL] [Abstract][Full Text] [Related]
17. Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: Influence of compatibilization. Phetwarotai W; Zawong M; Phusunti N; Aht-Ong D Int J Biol Macromol; 2021 Jul; 183():346-357. PubMed ID: 33932412 [TBL] [Abstract][Full Text] [Related]
18. Effect of Compatibilization on Biobased Rubber-Toughened Poly(trimethylene terephthalate): Miscibility, Morphology, and Mechanical Properties. Snowdon MR; Mohanty AK; Misra M ACS Omega; 2018 Jul; 3(7):7300-7309. PubMed ID: 31458890 [TBL] [Abstract][Full Text] [Related]
20. Improving the properties of polylactic acid/polypropylene carbonate blends through cardanol-induced compatibility enhancement. Song L; Chi W; Hao Y; Ren J; Yang B; Cong F; Li Y; Yu L; Li X; Wang Y Int J Biol Macromol; 2024 Feb; 258(Pt 1):128886. PubMed ID: 38141698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]