These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35783639)

  • 41. [Exploratory screening of potential pan-cancer biomarkers based on The Cancer Genome Atlas database].
    Zhou C; Ma X; Xing YK; Li LD; Chen J; Yao BY; Fu JL; Zhao P
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):602-607. PubMed ID: 34145869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EpCAM as a Novel Biomarker for Survivals in Prostate Cancer Patients.
    Liao Y; Wu M; Jia Y; Mou R; Li X
    Front Cell Dev Biol; 2022; 10():843604. PubMed ID: 35517503
    [No Abstract]   [Full Text] [Related]  

  • 43. Antioxidative stress protein SRXN1 can be used as a radiotherapy prognostic marker for prostate cancer.
    Wang X; Yu J; Wen H; Yan J; Peng K; Zhou H
    BMC Urol; 2023 Sep; 23(1):148. PubMed ID: 37726767
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Angiogenesis-related lncRNAs predict the prognosis signature of stomach adenocarcinoma.
    Han C; Zhang C; Wang H; Li K; Zhao L
    BMC Cancer; 2021 Dec; 21(1):1312. PubMed ID: 34876056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction and analysis of novel key genes ITGAX, LAPTM5, SERPINE1 in clear cell renal cell carcinoma through bioinformatics analysis.
    Sui Y; Lu K; Fu L
    PeerJ; 2021; 9():e11272. PubMed ID: 33976979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Comprehensive Analysis of Hub Gene ARRB2 in Prostate Cancer.
    Zhou B; Song H; Xu W; Zhang Y; Liu Y; Qi W
    Dis Markers; 2022; 2022():8518378. PubMed ID: 36284990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive analysis reveals a metabolic ten-gene signature in hepatocellular carcinoma.
    Zhu Z; Li L; Xu J; Ye W; Chen B; Zeng J; Huang Z
    PeerJ; 2020; 8():e9201. PubMed ID: 32518728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.
    Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J
    BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prognostic Value of a Stemness Index-Associated Signature in Primary Lower-Grade Glioma.
    Zhang M; Wang X; Chen X; Guo F; Hong J
    Front Genet; 2020; 11():441. PubMed ID: 32431729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying
    Ding J; Liu Y; Lai Y
    PeerJ; 2020; 8():e10419. PubMed ID: 33282565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comprehensive Analysis of Cell Cycle-Related Genes in Patients With Prostate Cancer.
    Liu Z; Pan R; Li W; Li Y
    Front Oncol; 2021; 11():796795. PubMed ID: 35087757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils the Characteristics of the Immune Microenvironment and Prognosis Signature in Prostate Cancer.
    Wang R; Xiao Y; Pan M; Chen Z; Yang P
    J Oncol; 2022; 2022():6768139. PubMed ID: 35909899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated bioinformatics analysis of IFITM1 as a prognostic biomarker and investigation of its immunological role in prostate adenocarcinoma.
    Qiao S; Zhang W; Su Y; Jiang Y
    Front Oncol; 2022; 12():1037535. PubMed ID: 36591519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LTF Regulates the Immune Microenvironment of Prostate Cancer Through JAK/STAT3 Pathway.
    Zhao Q; Cheng Y; Xiong Y
    Front Oncol; 2021; 11():692117. PubMed ID: 34868909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comprehensive Analysis of Alternative Splicing Signature in Gastric Cancer Prognosis Based on The Cancer Genome Atlas (TCGA) and SpliceSeq Databases.
    Cheng X; Li X; Gu Y; Zhou L; Tang J; Dai X; Jiang H; Huang Y; Zhang Y; Xu T; Liu Z; Zhao Q
    Med Sci Monit; 2020 Nov; 26():e925772. PubMed ID: 33219199
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction and Validation of a Prognostic Gene-Based Model for Overall Survival Prediction in Hepatocellular Carcinoma Using an Integrated Statistical and Bioinformatic Approach.
    Dessie EY; Tu SJ; Chiang HS; Tsai JJP; Chang YS; Chang JG; Ng KL
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562824
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Transcription Factor-Based Risk Model for Predicting the Prognosis of Prostate Cancer and Potential Therapeutic Drugs.
    Luo R; Huang M; Wang Y
    Evid Based Complement Alternat Med; 2021; 2021():6894278. PubMed ID: 34853602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The molecular feature of macrophages in tumor immune microenvironment of glioma patients.
    Zhang H; Luo YB; Wu W; Zhang L; Wang Z; Dai Z; Feng S; Cao H; Cheng Q; Liu Z
    Comput Struct Biotechnol J; 2021; 19():4603-4618. PubMed ID: 34471502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Establishment of a 7-microRNA prognostic signature and identification of hub target genes in colorectal carcinoma.
    Jiang S; Xie X; Jiang H
    Transl Cancer Res; 2022 Feb; 11(2):367-381. PubMed ID: 35281422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Zinc finger C3H1 domain-containing protein (ZFC3H1) evaluates the prognosis and treatment of prostate adenocarcinoma (PRAD): A study based on TCGA data.
    Huang H; Xu H; Li P; Ye X; Chen W; Chen W; Huang X
    Bioengineered; 2021 Dec; 12(1):5504-5515. PubMed ID: 34514952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.