These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35784049)
21. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. Mucci NC; Jones KA; Cao M; Wyatt MR; Foye S; Kauffman SJ; Richards GR; Taufer M; Chikaraishi Y; Steffan SA; Campagna SR; Goodrich-Blair H mSystems; 2022 Jun; 7(3):e0031222. PubMed ID: 35543104 [TBL] [Abstract][Full Text] [Related]
22. Type 6 secretion system components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. Pothula R; Lee MW; Patricia Stock S J Invertebr Pathol; 2023 Jun; 198():107925. PubMed ID: 37087093 [TBL] [Abstract][Full Text] [Related]
23. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode. An R; Grewal PS PLoS One; 2016; 11(1):e0145739. PubMed ID: 26745883 [TBL] [Abstract][Full Text] [Related]
25. Standing genetic variation in host preference for mutualist microbial symbionts. Simonsen AK; Stinchcombe JR Proc Biol Sci; 2014 Dec; 281(1797):. PubMed ID: 25355477 [TBL] [Abstract][Full Text] [Related]
26. Response of three cyprinid fish species to the Scavenger Deterrent Factor produced by the mutualistic bacteria associated with entomopathogenic nematodes. Raja RK; Aiswarya D; Gulcu B; Raja M; Perumal P; Sivaramakrishnan S; Kaya HK; Hazir S J Invertebr Pathol; 2017 Feb; 143():40-49. PubMed ID: 27908637 [TBL] [Abstract][Full Text] [Related]
27. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Emelianoff V; Chapuis E; Le Brun N; Chiral M; Moulia C; Ferdy JB Evolution; 2008 Apr; 62(4):932-42. PubMed ID: 18194474 [TBL] [Abstract][Full Text] [Related]
28. The entomopathogenic nematode Steinernema hermaphroditum is a self-fertilizing hermaphrodite and a genetically tractable system for the study of parasitic and mutualistic symbiosis. Cao M; Schwartz HT; Tan CH; Sternberg PW Genetics; 2022 Jan; 220(1):. PubMed ID: 34791196 [TBL] [Abstract][Full Text] [Related]
29. Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae. Murfin KE; Ginete DR; Bashey F; Goodrich-Blair H Environ Microbiol; 2018 May; ():. PubMed ID: 29799156 [TBL] [Abstract][Full Text] [Related]
30. Green and red fluorescent strains of St Thomas NM; Myers TG; Alani OS; Goodrich-Blair H; Heppert JK MicroPubl Biol; 2024; 2024():. PubMed ID: 38371317 [No Abstract] [Full Text] [Related]
31. Rapid Changes in Thermal Sensitivity of Entomopathogenic Nematodes in Response to Selection at Temperature Extremes. Grewal PS; Gaugler R; Shupe C J Invertebr Pathol; 1996 Jul; 68(1):65-73. PubMed ID: 8812571 [TBL] [Abstract][Full Text] [Related]
32. A co-evolutionary model of mutualism from a commensal association on Lotka-Volterra dynamics. Sikder A; Roy AB Biosystems; 1994; 32(1):39-60. PubMed ID: 8018840 [TBL] [Abstract][Full Text] [Related]
33. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume-rhizobium mutualism. Wendlandt CE; Helliwell E; Roberts M; Nguyen KT; Friesen ML; von Wettberg E; Price P; Griffitts JS; Porter SS Evolution; 2021 Mar; 75(3):731-747. PubMed ID: 33433925 [TBL] [Abstract][Full Text] [Related]
34. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria. Zwyssig M; Spescha A; Patt T; Belosevic A; Machado RAR; Regaiolo A; Keel C; Maurhofer M ISME J; 2024 Jan; 18(1):. PubMed ID: 38381653 [TBL] [Abstract][Full Text] [Related]
35. Differential effects of nematode infection on pollinating and non-pollinating fig wasps: Can shared antagonism provide net benefits to a mutualism? Van Goor J; Piatscheck F; Houston DD; Nason JD J Anim Ecol; 2021 Jul; 90(7):1764-1775. PubMed ID: 33934356 [TBL] [Abstract][Full Text] [Related]
36. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Sajnaga E; Kazimierczak W; Skowronek M; Lis M; Skrzypek T; Waśko A Arch Microbiol; 2018 Nov; 200(9):1307-1316. PubMed ID: 29946739 [TBL] [Abstract][Full Text] [Related]
37. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. An R; Sreevatsan S; Grewal PS BMC Genomics; 2009 Sep; 10():433. PubMed ID: 19754939 [TBL] [Abstract][Full Text] [Related]
38. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Ogier JC; Pagès S; Bisch G; Chiapello H; Médigue C; Rouy Z; Teyssier C; Vincent S; Tailliez P; Givaudan A; Gaudriault S Genome Biol Evol; 2014 Jun; 6(6):1495-513. PubMed ID: 24904010 [TBL] [Abstract][Full Text] [Related]
39. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes. Chaston JM; Murfin KE; Heath-Heckman EA; Goodrich-Blair H Cell Microbiol; 2013 Sep; 15(9):1545-59. PubMed ID: 23480552 [TBL] [Abstract][Full Text] [Related]
40. Co-evolution of marine worms and their chemoautotrophic bacterial symbionts: unexpected host switches explained by ecological fitting? Brune A Mol Ecol; 2016 Jul; 25(13):2964-6. PubMed ID: 27373707 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]