BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35784189)

  • 1. NeoRS: A Neonatal Resting State fMRI Data Preprocessing Pipeline.
    Enguix V; Kenley J; Luck D; Cohen-Adad J; Lodygensky GA
    Front Neuroinform; 2022; 16():843114. PubMed ID: 35784189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
    Baxter L; Fitzgibbon S; Moultrie F; Goksan S; Jenkinson M; Smith S; Andersson J; Duff E; Slater R
    Neuroimage; 2019 Feb; 186():286-300. PubMed ID: 30414984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants.
    Fitzgibbon SP; Harrison SJ; Jenkinson M; Baxter L; Robinson EC; Bastiani M; Bozek J; Karolis V; Cordero Grande L; Price AN; Hughes E; Makropoulos A; Passerat-Palmbach J; Schuh A; Gao J; Farahibozorg SR; O'Muircheartaigh J; Ciarrusta J; O'Keeffe C; Brandon J; Arichi T; Rueckert D; Hajnal JV; Edwards AD; Smith SM; Duff E; Andersson J
    Neuroimage; 2020 Dec; 223():117303. PubMed ID: 32866666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.
    Chen T; Ryali S; Qin S; Menon V
    Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data.
    Waller L; Erk S; Pozzi E; Toenders YJ; Haswell CC; Büttner M; Thompson PM; Schmaal L; Morey RA; Walter H; Veer IM
    Hum Brain Mapp; 2022 Jun; 43(9):2727-2742. PubMed ID: 35305030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BrainSuite BIDS App: Containerized Workflows for MRI Analysis.
    Kim Y; Joshi AA; Choi S; Joshi SH; Bhushan C; Varadarajan D; Haldar JP; Leahy RM; Shattuck DW
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
    Parkes L; Fulcher B; Yücel M; Fornito A
    Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of heritability estimates on resting state fMRI connectivity phenotypes using the ENIGMA analysis pipeline.
    Adhikari BM; Jahanshad N; Shukla D; Glahn DC; Blangero J; Fox PT; Reynolds RC; Cox RW; Fieremans E; Veraart J; Novikov DS; Nichols TE; Hong LE; Thompson PM; Kochunov P
    Hum Brain Mapp; 2018 Dec; 39(12):4893-4902. PubMed ID: 30052318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction.
    Wang L; Wu Z; Chen L; Sun Y; Lin W; Li G
    Nat Protoc; 2023 May; 18(5):1488-1509. PubMed ID: 36869216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.
    Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC
    Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem.
    Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A
    Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri).
    Pallast N; Diedenhofen M; Blaschke S; Wieters F; Wiedermann D; Hoehn M; Fink GR; Aswendt M
    Front Neuroinform; 2019; 13():42. PubMed ID: 31231202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.
    Maldjian JA; Davenport EM; Whitlow CT
    Neuroimage; 2014 Aug; 96():88-94. PubMed ID: 24699016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 16. Ayu-Characterization of healthy aging from neuroimaging data with deep learning and rsfMRI.
    Borkar K; Chaturvedi A; Vinod PK; Bapi RS
    Front Comput Neurosci; 2022; 16():940922. PubMed ID: 36172055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time presurgical resting-state fMRI in patients with brain tumors: Quality control and comparison with task-fMRI and intraoperative mapping.
    Vakamudi K; Posse S; Jung R; Cushnyr B; Chohan MO
    Hum Brain Mapp; 2020 Feb; 41(3):797-814. PubMed ID: 31692177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline.
    Adhikari BM; Jahanshad N; Shukla D; Glahn DC; Blangero J; Reynolds RC; Cox RW; Fieremans E; Veraart J; Novikov DS; Nichols TE; Hong LE; Thompson PM; Kochunov P
    Pac Symp Biocomput; 2018; 23():307-318. PubMed ID: 29218892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.