BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35784856)

  • 1. The Effects of Sensory Threshold Somatosensory Electrical Stimulation on Users With Different MI-BCI Performance.
    Chen L; Zhang L; Wang Z; Gu B; Zhang X; Ming D
    Front Neurosci; 2022; 16():909434. PubMed ID: 35784856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Visual-Guided Motor Imagery Performance via Sensory Threshold Somatosensory Electrical Stimulation Training.
    Zhang L; Chen L; Wang Z; Zhang X; Liu X; Ming D
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):756-765. PubMed ID: 36037456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.
    Corbet T; Iturrate I; Pereira M; Perdikis S; Millán JDR
    Neuroimage; 2018 Aug; 176():268-276. PubMed ID: 29689307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Motor Imagery-Based Brain-Computer Interface Performance Based on Sensory Stimulation Training: An Approach Focused on Poorly Performing Users.
    Park S; Ha J; Kim DH; Kim L
    Front Neurosci; 2021; 15():732545. PubMed ID: 34803582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Connectivity Analysis in Motor-Imagery Brain Computer Interfaces.
    Leeuwis N; Yoon S; Alimardani M
    Front Hum Neurosci; 2021; 15():732946. PubMed ID: 34720907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia.
    Chen S; Shu X; Wang H; Ding L; Fu J; Jia J
    Front Neurorobot; 2021; 15():706630. PubMed ID: 34803647
    [No Abstract]   [Full Text] [Related]  

  • 7. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study.
    Prasad G; Herman P; Coyle D; McDonough S; Crosbie J
    J Neuroeng Rehabil; 2010 Dec; 7():60. PubMed ID: 21156054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Correlates of Motor/Tactile Imagery and Tactile Sensation in a BCI paradigm: A High-Density EEG Source Imaging Study.
    Wen H; Zhong Y; Yao L; Wang Y
    Cyborg Bionic Syst; 2024; 5():0118. PubMed ID: 38912322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling.
    Lee M; Yoon JG; Lee SW
    Front Hum Neurosci; 2020; 14():321. PubMed ID: 32903663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Frequency Effect of the Motor Imagery Brain Computer Interface Training on Cortical Response in Healthy Subjects: A Randomized Clinical Trial of Functional Near-Infrared Spectroscopy Study.
    Lin Q; Zhang Y; Zhang Y; Zhuang W; Zhao B; Ke X; Peng T; You T; Jiang Y; Yilifate A; Huang W; Hou L; You Y; Huai Y; Qiu Y; Zheng Y; Ou H
    Front Neurosci; 2022; 16():810553. PubMed ID: 35431792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does feedback based on FES-evoked nociceptive withdrawal reflex condition event-related desynchronization? An exploratory study with brain-computer interfaces.
    Tabernig CB; Carrere LC; Manresa JB; Spaich EG
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34431480
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.