These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3578531)

  • 1. Adrenergic and angiotensin II influences on renal vascular tone in chronic sodium depletion.
    Tucker BJ; Mundy CA; Blantz RC
    Am J Physiol; 1987 May; 252(5 Pt 2):F811-7. PubMed ID: 3578531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin.
    Steiner RW; Tucker BJ; Blantz RC
    J Clin Invest; 1979 Aug; 64(2):503-12. PubMed ID: 457865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin II in adrenergic-induced alterations in glomerular hemodynamics.
    Pelayo JC; Ziegler MG; Blantz RC
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F799-807. PubMed ID: 6093592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in glomerular hemodynamic response to angiotensin II after subacute renal denervation in rats.
    Tucker BJ; Mundy CA; Maciejewski AR; Printz MP; Ziegler MG; Pelayo JC; Blantz RC
    J Clin Invest; 1986 Sep; 78(3):680-8. PubMed ID: 3745432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion.
    Kon V; Yared A; Ichikawa I
    J Clin Invest; 1985 Nov; 76(5):1913-20. PubMed ID: 4056058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of renal denervation in the hydropenic rat: interactions with angiotensin II.
    Pelayo JC; Blantz RC
    Am J Physiol; 1984 Jan; 246(1 Pt 2):F87-95. PubMed ID: 6696082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of angiotensin inhibition and renal denervation in two-kidney, one clip hypertensive rats.
    Rademacher R; Berecek KH; Ploth DW
    Hypertension; 1986 Dec; 8(12):1127-34. PubMed ID: 3025089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin.
    Yared A; Kon V; Ichikawa I
    J Clin Invest; 1985 May; 75(5):1477-87. PubMed ID: 3998146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The renal nerve is required for regulation of proximal tubule transport by intraluminally produced ANG II.
    Quan A; Baum M
    Am J Physiol Renal Physiol; 2001 Mar; 280(3):F524-9. PubMed ID: 11181415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of altered glomerular hemodynamics during chronic sodium depletion.
    Tucker BJ; Blantz RC
    Am J Physiol; 1983 Jan; 244(1):F11-8. PubMed ID: 6185006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of kinins and angiotensin II in the renal hemodynamic response to captopril.
    Mattson DL; Roman RJ
    Am J Physiol; 1991 May; 260(5 Pt 2):F670-9. PubMed ID: 2035654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of angiotensin II in the altered renal function of congestive heart failure.
    Ichikawa I; Pfeffer JM; Pfeffer MA; Hostetter TH; Brenner BM
    Circ Res; 1984 Nov; 55(5):669-75. PubMed ID: 6091942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of beta 1-adrenergic blockade on glomerular dynamics and angiotensin II response.
    Tucker BJ; Mundy CA; Blantz RC
    Am J Physiol; 1989 Aug; 257(2 Pt 2):F225-30. PubMed ID: 2548399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of angiotensin II on pressure natriuresis and renal hemodynamics in volume-expanded rats.
    Mattson DL; Raff H; Roman RJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):R1200-9. PubMed ID: 2058747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glomerular immune injury in the rat: the influence of angiotensin II and alpha-adrenergic inhibitors.
    Blantz RC; Tucker BJ; Gushwa LC; Peterson OW; Wilson CB
    Kidney Int; 1981 Oct; 20(4):452-61. PubMed ID: 6118461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of renal adrenergic effector mechanisms by calcium entry blockers.
    Pelayo JC
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F613-20. PubMed ID: 3565576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiopathological implications of P2X
    Franco M; Bautista-Pérez R; Cano-Martínez A; Pacheco U; Santamaría J; Del Valle Mondragón L; Pérez-Méndez O; Navar LG
    Am J Physiol Renal Physiol; 2017 Jul; 313(1):F9-F19. PubMed ID: 28404593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sodium depletion on the role of AT1- and alpha-adrenergic receptors in the regulation of forearm vascular tone in humans.
    Baan J; Chang PC; Vermeij P; Pfaffendorf M; van Zwieten PA
    J Hypertens; 1999 Feb; 17(2):229-35. PubMed ID: 10067792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glomerular and tubular actions of angiotensin II.
    Blantz RC
    Am J Kidney Dis; 1987 Jul; 10(1 Suppl 1):2-6. PubMed ID: 2886045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.