These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35785467)

  • 1. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries.
    Pang X; Zhong S; Wang Y; Yang W; Zheng W; Sun G
    Chem Rec; 2022 Oct; 22(10):e202200131. PubMed ID: 35785467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors.
    Chen D; Zhao Q; Zheng Y; Xu Y; Chen Y; Ni J; Zhao Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual Life Prediction of Lithium Batteries Based on Data Mining.
    Ma D; Qin X
    Comput Intell Neurosci; 2022; 2022():4520160. PubMed ID: 35958783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State of Health Prediction of Lithium-Ion Battery Based on Deep Dilated Convolution.
    Fu P; Chu L; Li J; Guo Z; Hu J; Hou Z
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries.
    Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B
    Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria.
    Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R
    Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian.
    Alipour M; Tavallaey SS; Andersson AM; Brandell D
    Chemphyschem; 2022 Apr; 23(7):e202100829. PubMed ID: 35075749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.
    Wang YC; Shao NC; Chen GW; Hsu WS; Wu SC
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health State Estimation of On-Board Lithium-Ion Batteries Based on GMM-BID Model.
    Feng S; Wang A; Cai J; Zuo H; Zhang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture.
    Li L; Wang P; Chao KH; Zhou Y; Xie Y
    PLoS One; 2016; 11(9):e0163004. PubMed ID: 27632176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches.
    Li A; Yuen ACY; Wang W; De Cachinho Cordeiro IM; Wang C; Chen TBY; Zhang J; Chan QN; Yeoh GH
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Fusion Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on Improved Genetic Algorithm BP and Adaptive Extended Kalman Filter.
    Cao L; Shao C; Zhang Z; Cao S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of energy estimation of lithium-ion battery based on long short-term memory optimization Adaptive Cubature Kalman filter.
    Hou E; Song H; Wang Z; Zhu J; Tang J; Shen G; Wang J
    PLoS One; 2024; 19(7):e0306165. PubMed ID: 38985707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.