These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35785657)

  • 21. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome.
    Feuvrier F; Sijobert B; Azevedo C; Griffiths K; Alonso S; Dupeyron A; Laffont I; Froger J
    Ann Phys Rehabil Med; 2020 May; 63(3):195-201. PubMed ID: 31009801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning.
    Lim H; Kim B; Park S
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection.
    Jabri S; Carender W; Wiens J; Sienko KH
    J Neuroeng Rehabil; 2022 Dec; 19(1):132. PubMed ID: 36456966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validity Evaluation of an Inertial Measurement Unit (IMU) in Gait Analysis Using Statistical Parametric Mapping (SPM).
    Park S; Yoon S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generalizability of deep learning models for predicting outdoor irregular walking surfaces.
    Shah V; Flood MW; Grimm B; Dixon PC
    J Biomech; 2022 Jun; 139():111159. PubMed ID: 35653898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of gait variation under mental workload in big five personalities.
    Chen SJ; Lee YJ
    Gait Posture; 2024 Jun; 113():123-129. PubMed ID: 38878610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach.
    Lee J; Joo H; Lee J; Chee Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method of classification decision based on multi-BiLSTMs for physical loads hierarchy.
    Wang Y; Zhang C; Zhao Y; Liao Y; Gao Y; Zheng J
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(10):1101-1113. PubMed ID: 35920611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning for Human Motion Intention Detection.
    Lin JJ; Hsu CK; Hsu WL; Tsao TC; Wang FC; Yen JY
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle fatigue during a short walking exercise in children with cerebral palsy who walk in a crouch gait.
    Parent A; Pouliot-Laforte A; Dal Maso F; Cherni Y; Marois P; Ballaz L
    Gait Posture; 2019 Jul; 72():22-27. PubMed ID: 31132593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IMU-Based Classification of Parkinson's Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection.
    Caramia C; Torricelli D; Schmid M; Munoz-Gonzalez A; Gonzalez-Vargas J; Grandas F; Pons JL
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1765-1774. PubMed ID: 30106745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying Fatigue Indicators Using Gait Variability Measures: A Longitudinal Study on Elderly Brisk Walking.
    Zhang G; Wong IK; Chen TL; Hong TT; Wong DW; Peng Y; Yan F; Wang Y; Tan Q; Zhang M
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of gait parameters in individuals with a lower-limb amputation during a six-minute walk test.
    Beausoleil S; Miramand L; Turcot K
    Gait Posture; 2019 Jul; 72():40-45. PubMed ID: 31136941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification Model for Discriminating Trunk Fatigue During Running.
    Halkiadakis Y; Alzakerin HM; Morgan KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4546-4549. PubMed ID: 34892228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimum number of inertial measurement units needed to identify significant variations in walk patterns of overweight individuals walking on irregular surfaces.
    Sikandar T; Rabbi MF; Ghazali KH; Altwijri O; Almijalli M; Ahamed NU
    Sci Rep; 2023 Sep; 13(1):16177. PubMed ID: 37758958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How We Found Our IMU: Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications.
    Zhou L; Fischer E; Tunca C; Brahms CM; Ersoy C; Granacher U; Arnrich B
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smartphone-based human fatigue level detection using machine learning approaches.
    Karvekar S; Abdollahi M; Rashedi E
    Ergonomics; 2021 May; 64(5):600-612. PubMed ID: 33393439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis.
    Kobsar D; Charlton JM; Tse CTF; Esculier JF; Graffos A; Krowchuk NM; Thatcher D; Hunt MA
    J Neuroeng Rehabil; 2020 May; 17(1):62. PubMed ID: 32393301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.