These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35785657)

  • 41. A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States.
    Pinto-Bernal MJ; Cifuentes CA; Perdomo O; Rincón-Roncancio M; Múnera M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of IMU set-ups for the estimation of gait spatio-temporal parameters in an elderly population.
    Digo E; Panero E; Agostini V; Gastaldi L
    Proc Inst Mech Eng H; 2023 Jan; 237(1):61-73. PubMed ID: 36377588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards Machine Learning-Based Detection of Running-Induced Fatigue in Real-World Scenarios: Evaluation of IMU Sensor Configurations to Reduce Intrusiveness.
    Marotta L; Buurke JH; van Beijnum BF; Reenalda J
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34063478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms.
    Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T
    Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data.
    Pardoel S; Shalin G; Nantel J; Lemaire ED; Kofman J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A multi-sensor human gait dataset captured through an optical system and inertial measurement units.
    Santos G; Wanderley M; Tavares T; Rocha A
    Sci Data; 2022 Sep; 9(1):545. PubMed ID: 36071060
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recognition of walking directional intention employed ground reaction forces and center of pressure during gait initiation.
    Yen YL; Ye SK; Liang JN; Lee YJ
    Gait Posture; 2023 Sep; 106():23-27. PubMed ID: 37639961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Centre of Pressure Estimation during Walking Using Only Inertial-Measurement Units and End-To-End Statistical Modelling.
    Podobnik J; Kraljić D; Zadravec M; Munih M
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33126671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics.
    Asogwa CO; Nagano H; Wang K; Begg R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joint Constraints Based Dynamic Calibration of IMU Position on Lower Limbs in IMU-MoCap.
    Hu Q; Liu L; Mei F; Yang C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinematic gait characteristics of straight line walk in clinically sound dairy cows.
    Tijssen M; Serra Braganςa FM; Ask K; Rhodin M; Andersen PH; Telezhenko E; Bergsten C; Nielen M; Hernlund E
    PLoS One; 2021; 16(7):e0253479. PubMed ID: 34288912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis.
    Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y
    Front Physiol; 2019; 10():1530. PubMed ID: 31998138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults.
    Granacher U; Wolf I; Wehrle A; Bridenbaugh S; Kressig RW
    J Neuroeng Rehabil; 2010 Nov; 7():56. PubMed ID: 21062458
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. IMU-Based Energy Expenditure Estimation for Various Walking Conditions Using a Hybrid CNN-LSTM Model.
    Lee CJ; Lee JK
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257507
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detecting fatigue of sport horses with biomechanical gait features using inertial sensors.
    Darbandi H; Munsters C; Parmentier J; Havinga P
    PLoS One; 2023; 18(4):e0284554. PubMed ID: 37058516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject's Gait Progression Using Wearable Inertial Sensor.
    Jeon H; Lee D
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.