These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35785657)

  • 61. Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject's Gait Progression Using Wearable Inertial Sensor.
    Jeon H; Lee D
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400434
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A machine learning approach to estimate Minimum Toe Clearance using Inertial Measurement Units.
    Santhiranayagam BK; Lai DT; Sparrow WA; Begg RK
    J Biomech; 2015 Dec; 48(16):4309-16. PubMed ID: 26573902
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors.
    Soulard J; Vaillant J; Baillet A; Gaudin P; Vuillerme N
    JMIR Mhealth Uhealth; 2021 Nov; 9(11):e27087. PubMed ID: 34751663
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A single Inertial Measurement Unit on the shank to assess the Shank-to-Vertical Angle.
    de Jong LAF; Kerkum YL; van Oorschot W; Keijsers NLW
    J Biomech; 2020 Jul; 108():109895. PubMed ID: 32636007
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks.
    Shalin G; Pardoel S; Lemaire ED; Nantel J; Kofman J
    J Neuroeng Rehabil; 2021 Nov; 18(1):167. PubMed ID: 34838066
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Wearable inertial sensors are highly sensitive in the detection of gait disturbances and fatigue at early stages of multiple sclerosis.
    Müller R; Hamacher D; Hansen S; Oschmann P; Keune PM
    BMC Neurol; 2021 Sep; 21(1):337. PubMed ID: 34481481
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking.
    Bastien GJ; Gosseye TP; Penta M
    Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking.
    Revi DA; Alvarez AM; Walsh CJ; De Rossi SMM; Awad LN
    J Neuroeng Rehabil; 2020 Jun; 17(1):82. PubMed ID: 32600348
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sensor-based gait analyses of the six-minute walk test identify qualitative improvement in gait parameters of people with multiple sclerosis after rehabilitation.
    Berg-Hansen P; Moen SM; Austeng A; Gonzales V; Klyve TD; Negård H; Seeberg TM; Celius EG; Meyer F
    J Neurol; 2022 Jul; 269(7):3723-3734. PubMed ID: 35166925
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multiple Inertial Measurement Unit Combination and Location for Center of Pressure Prediction in Gait.
    Wu CC; Chen YJ; Hsu CS; Wen YT; Lee YJ
    Front Bioeng Biotechnol; 2020; 8():566474. PubMed ID: 33195127
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A multi-segment modelling approach for foot trajectory estimation using inertial sensors.
    Okkalidis N; Marinakis G; Gatt A; Bugeja MK; Camilleri KP; Falzon O
    Gait Posture; 2020 Jan; 75():22-27. PubMed ID: 31590066
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gait Phase Detection in Walking and Stairs Using Machine Learning.
    Bauman VV; Brandon SCE
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of runner fatigue stages based on inertial sensors and deep learning.
    Chang P; Wang C; Chen Y; Wang G; Lu A
    Front Bioeng Biotechnol; 2023; 11():1302911. PubMed ID: 38047289
    [No Abstract]   [Full Text] [Related]  

  • 75. Temporal Variation Quantification During Cognitive Dual-Task Gait Using Two IMU Sensors.
    Hutabarat Y; Owaki D; Hayashibe M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1121-1124. PubMed ID: 36086327
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Personalized Template-Based Step Detection From Inertial Measurement Units Signals in Multiple Sclerosis.
    Vienne-Jumeau A; Oudre L; Moreau A; Quijoux F; Edmond S; Dandrieux M; Legendre E; Vidal PP; Ricard D
    Front Neurol; 2020; 11():261. PubMed ID: 32373047
    [No Abstract]   [Full Text] [Related]  

  • 77. Validity and inter-rater reliability of inertial gait measurements in Parkinson's disease: a pilot study.
    Esser P; Dawes H; Collett J; Feltham MG; Howells K
    J Neurosci Methods; 2012 Mar; 205(1):177-81. PubMed ID: 22269595
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.
    Yoon J; Park HS; Damiano DL
    J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Uneven terrain affects metabolic cost and gait in simulated complex lunar surfaces.
    Kim KJ; Baughman A; Estep P; Rivas E; Young M; Marshall-Goebel K; Abercromby A; Somers J
    Physiol Meas; 2023 Oct; 44(10):. PubMed ID: 37703896
    [No Abstract]   [Full Text] [Related]  

  • 80. Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study.
    Simonetti E; Villa C; Bascou J; Vannozzi G; Bergamini E; Pillet H
    Med Biol Eng Comput; 2020 Mar; 58(3):461-470. PubMed ID: 31873834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.