These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35786642)

  • 41. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro.
    Hájos N; Karlócai MR; Németh B; Ulbert I; Monyer H; Szabó G; Erdélyi F; Freund TF; Gulyás AI
    J Neurosci; 2013 Jul; 33(28):11677-91. PubMed ID: 23843535
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events.
    Jadhav SP; Rothschild G; Roumis DK; Frank LM
    Neuron; 2016 Apr; 90(1):113-27. PubMed ID: 26971950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Circuit mechanisms of hippocampal reactivation during sleep.
    Malerba P; Bazhenov M
    Neurobiol Learn Mem; 2019 Apr; 160():98-107. PubMed ID: 29723670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous dual-color calcium imaging in freely-behaving mice.
    Dong Z; Feng Y; Diego K; Baggetta AM; Sweis BM; Pennington ZT; Lamsifer SI; Zaki Y; Sangiuliano F; Philipsberg PA; Morales-Rodriguez D; Kircher D; Slesinger P; Shuman T; Aharoni D; Cai DJ
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hippocampal sharp waves and ripples: Effects of aging and modulation by NMDA receptors and L-type Ca2+ channels.
    Kouvaros S; Kotzadimitriou D; Papatheodoropoulos C
    Neuroscience; 2015 Jul; 298():26-41. PubMed ID: 25869622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Precise coupling of the thalamic head-direction system to hippocampal ripples.
    Viejo G; Peyrache A
    Nat Commun; 2020 May; 11(1):2524. PubMed ID: 32433538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparing Viable Hippocampal Slices from Adult Mice for the Study of Sharp Wave-ripples.
    Liu L; Zhou X; Wu JY
    Bio Protoc; 2020 Oct; 10(19):e3771. PubMed ID: 33659429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subiculum as a generator of sharp wave-ripples in the rodent hippocampus.
    Imbrosci B; Nitzan N; McKenzie S; Donoso JR; Swaminathan A; Böhm C; Maier N; Schmitz D
    Cell Rep; 2021 Apr; 35(3):109021. PubMed ID: 33882307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes.
    Cutsuridis V; Taxidis J
    Front Syst Neurosci; 2013; 7():13. PubMed ID: 23653599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Food intake enhances hippocampal sharp wave-ripples.
    Kaya E; Wegienka E; Akhtarzandi-Das A; Do H; Eban-Rothschild A; Rothschild G
    bioRxiv; 2024 Nov; ():. PubMed ID: 39416018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions.
    Jeong H; Namboodiri VMK; Jung MW; Andermann ML
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential participation of pyramidal cells in generation of spontaneous sharp wave-ripples in the mouse subiculum in vitro.
    Maslarova A; Lippmann K; Salar S; Rösler A; Heinemann U
    Neurobiol Learn Mem; 2015 Nov; 125():113-9. PubMed ID: 26318491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Posterior Hippocampal Spindle Ripples Co-occur with Neocortical Theta Bursts and Downstates-Upstates, and Phase-Lock with Parietal Spindles during NREM Sleep in Humans.
    Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2019 Nov; 39(45):8949-8968. PubMed ID: 31530646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo.
    Gan J; Weng SM; Pernía-Andrade AJ; Csicsvari J; Jonas P
    Neuron; 2017 Jan; 93(2):308-314. PubMed ID: 28041883
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Opto-electrical bimodal recording of neural activity in awake head-restrained mice.
    Cobar LF; Kashef A; Bose K; Tashiro A
    Sci Rep; 2022 Jan; 12(1):736. PubMed ID: 35031630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical-hippocampal interactions.
    Liu X; Ren C; Lu Y; Liu Y; Kim JH; Leutgeb S; Komiyama T; Kuzum D
    Nat Neurosci; 2021 Jun; 24(6):886-896. PubMed ID: 33875893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid classification of hippocampal replay content for real-time applications.
    Deng X; Liu DF; Karlsson MP; Frank LM; Eden UT
    J Neurophysiol; 2016 Nov; 116(5):2221-2235. PubMed ID: 27535369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experience alters hippocampal and cortical network communication via a KIBRA-dependent mechanism.
    Quigley LD; Pendry R; Mendoza ML; Pfeiffer BE; Volk LJ
    Cell Rep; 2023 Jun; 42(6):112662. PubMed ID: 37347662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sleep loss diminishes hippocampal reactivation and replay.
    Giri B; Kaya U; Maboudi K; Abel T; Diba K
    Res Sq; 2023 Feb; ():. PubMed ID: 36824950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning.
    Rangel Guerrero DK; Donnett JG; Csicsvari J; Kovács KA
    eNeuro; 2018; 5(4):. PubMed ID: 30225344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.