BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35786823)

  • 1. Suppression of Filament Defects in Embedded 3D Printing.
    Friedrich LM; Gunther RT; Seppala JE
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32561-32578. PubMed ID: 35786823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated filament shapes in embedded 3D printing.
    Friedrich LM; Seppala JE
    Soft Matter; 2021 Sep; 17(35):8027-8046. PubMed ID: 34297018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous Two-Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter.
    Becker M; Gurian M; Schot M; Leijten J
    Adv Sci (Weinh); 2023 Mar; 10(8):e2204609. PubMed ID: 36585374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.
    Yang Q; Li H; Li M; Li Y; Chen S; Bao B; Song Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41521-41528. PubMed ID: 29110465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded 3D Printing of Thermally-Cured Thermoset Elastomers and the Interdependence of Rheology and Machine Pathing.
    Stang M; Tashman J; Shiwarski D; Yang H; Yao L; Feinberg A
    Adv Mater Technol; 2023 Feb; 8(3):. PubMed ID: 36817013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension.
    Jin Y; Song K; Gellermann N; Huang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29207-29217. PubMed ID: 31333016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ characterization of low-viscosity direct ink writing: Stability, wetting, and rotational flows.
    Friedrich L; Begley M
    J Colloid Interface Sci; 2018 Nov; 529():599-609. PubMed ID: 30031287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages.
    Hua W; Mitchell K; Raymond L; Godina B; Zhao D; Zhou W; Jin Y
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4736-4756. PubMed ID: 34582176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embedded Core-Shell 3D Printing (eCS3DP) with Low-Viscosity Polysiloxanes.
    Karyappa R; Goh WH; Hashimoto M
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41520-41530. PubMed ID: 36048005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning.
    Wu J; Wu C; Zou S; Li X; Ho B; Sun R; Liu C; Chen M
    Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications.
    Ren B; Song K; Sanikommu AR; Chai Y; Longmire MA; Chai W; Murfee WL; Huang Y
    Appl Phys Rev; 2022 Mar; 9(1):011408. PubMed ID: 35242266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Inkjet Printing of Graphene-Based Elements: Influence of Dispersing Agent on Ink Viscosity.
    Dybowska-Sarapuk L; Kielbasinski K; Arazna A; Futera K; Skalski A; Janczak D; Sloma M; Jakubowska M
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30096800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing.
    Tang A; Liu Y; Wang Q; Chen R; Liu W; Fang Z; Wang L
    Carbohydr Polym; 2016 Sep; 148():29-35. PubMed ID: 27185112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.