These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35786823)

  • 21. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing bioink shape fidelity to aid material development in 3D bioprinting.
    Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J
    Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication.
    Jin Y; Chai W; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():313-325. PubMed ID: 28866170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass.
    An YJ; Guo CF; Zhang M; Zhong ZP
    J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.
    Feng C; Zhang M; Bhandari B
    Crit Rev Food Sci Nutr; 2019; 59(19):3074-3081. PubMed ID: 29856675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing Low-Stiffness Silicone Within a Curable Support Matrix.
    Greenwood TE; Hatch SE; Colton MB; Thomson SL
    Addit Manuf; 2021 Jan; 37():. PubMed ID: 33718006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing?
    Samaro A; Shaqour B; Goudarzi NM; Ghijs M; Cardon L; Boone MN; Verleije B; Beyers K; Vanhoorne V; Cos P; Vervaet C
    Int J Pharm; 2021 Sep; 607():120922. PubMed ID: 34303815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing.
    Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y
    Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal.
    Lin Z; Qiu X; Cai Z; Li J; Zhao Y; Lin X; Zhang J; Hu X; Bai H
    Nat Commun; 2024 Jun; 15(1):4806. PubMed ID: 38839743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS.
    Oladeji S; Mohylyuk V; Jones DS; Andrews GP
    Int J Pharm; 2022 Mar; 616():121553. PubMed ID: 35131354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Printing Using a Maize Protein: Zein-Based Inks in Biomedical Applications.
    Tavares-Negrete JA; Aceves-Colin AE; Rivera-Flores DC; Díaz-Armas GG; Mertgen AS; Trinidad-Calderón PA; Olmos-Cordero JM; Gómez-López EG; Pérez-Carrillo E; Escobedo-Avellaneda ZJ; Tamayol A; Alvarez MM; Trujillo-de Santiago G
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3964-3979. PubMed ID: 34197076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mini-review of embedded 3D printing: supporting media and strategies.
    Zhao J; He N
    J Mater Chem B; 2020 Dec; 8(46):10474-10486. PubMed ID: 33125018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct-ink-write printing of hydrogels using dilute inks.
    Li X; Zhang P; Li Q; Wang H; Yang C
    iScience; 2021 Apr; 24(4):102319. PubMed ID: 33870134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale 3D printing via active nozzle size and shape control.
    Kang SW; Mueller J
    Sci Adv; 2024 Jun; 10(23):eadn7772. PubMed ID: 38838136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties.
    Agarwal PS; Poddar S; Varshney N; Sahi AK; Vajanthri KY; Yadav K; Parmar AS; Mahto SK
    J Biomater Appl; 2021 Apr; 35(9):1132-1142. PubMed ID: 33377809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Microstructured Calcium Phosphate Ceramics Scaffolds by Material Extrusion-Based 3D Printing Approach.
    Dee P; Tan S; Ferrand HL
    Int J Bioprint; 2022; 8(2):551. PubMed ID: 35669324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The future of 3D food printing: Opportunities for space applications.
    Enfield RE; Pandya JK; Lu J; McClements DJ; Kinchla AJ
    Crit Rev Food Sci Nutr; 2023; 63(29):10079-10092. PubMed ID: 35652158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.