These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35786823)

  • 41. The future of 3D food printing: Opportunities for space applications.
    Enfield RE; Pandya JK; Lu J; McClements DJ; Kinchla AJ
    Crit Rev Food Sci Nutr; 2023; 63(29):10079-10092. PubMed ID: 35652158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The examination of vegetable- and mineral oil-based inks' effects on print quality: Green printing effects with different oils.
    Aydemir C; Yenidoğan S; Karademir A; Arman Kandirmaz E
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):137-143. PubMed ID: 29618225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy.
    Gardini D; Dondi M; Costa AL; Matteucci F; Blosi M; Galassi C; Baldi G; Cinotti E
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1979-88. PubMed ID: 18572602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rheology and 3D Printability of Percolated Graphene-Polyamide-6 Composites.
    Lee KPM; Brandt M; Shanks R; Daver F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-Demand Programming of Liquid Metal-Composite Microstructures through Direct Ink Write 3D Printing.
    Haake A; Tutika R; Schloer GM; Bartlett MD; Markvicka EJ
    Adv Mater; 2022 May; 34(20):e2200182. PubMed ID: 35353948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Voxelated soft matter via multimaterial multinozzle 3D printing.
    Skylar-Scott MA; Mueller J; Visser CW; Lewis JA
    Nature; 2019 Nov; 575(7782):330-335. PubMed ID: 31723289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties.
    Mahmoudi M; Burlison SR; Moreno S; Minary-Jolandan M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5529-5538. PubMed ID: 33476138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viscoplastic Matrix Materials for Embedded 3D Printing.
    Grosskopf AK; Truby RL; Kim H; Perazzo A; Lewis JA; Stone HA
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23353-23361. PubMed ID: 29493215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Viscosity and Surface Tension of a Reactive Dye Ink on Droplet Formation.
    Tang Z; Fang K; Bukhari MN; Song Y; Zhang K
    Langmuir; 2020 Aug; 36(32):9481-9488. PubMed ID: 32787136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing.
    Shin S; Hyun J
    Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design.
    Gardini D; Blosi M; Zanelli C; Dondi M
    J Nanosci Nanotechnol; 2015 May; 15(5):3552-61. PubMed ID: 26504976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Printability study of metal ion crosslinked PEG-catechol based inks.
    Włodarczyk-Biegun MK; Paez JI; Villiou M; Feng J; Del Campo A
    Biofabrication; 2020 Apr; 12(3):035009. PubMed ID: 31899910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advanced supramolecular design for direct ink writing of soft materials.
    Tang M; Zhong Z; Ke C
    Chem Soc Rev; 2023 Mar; 52(5):1614-1649. PubMed ID: 36779285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Material Extrusion Filament Width and Height Prediction via Design of Experiment and Machine Learning.
    Shi X; Sun Y; Tian H; Abhilash PM; Luo X; Liu H
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of karanja oil based offset printing ink in comparison with linseed oil.
    Bhattacharjee M; Roy AS; Ghosh S; Dey M
    J Oleo Sci; 2011; 60(1):19-24. PubMed ID: 21178313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin.
    Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.