These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35786946)

  • 21. A sub-microwatt low-noise amplifier for neural recording.
    Holleman J; Otis B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3930-3. PubMed ID: 18002859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A compact amplifier for extracellular recording.
    Brakel S; Babb T; Mahnke J; Verzeano M
    Physiol Behav; 1971 Jun; 6(6):731-3. PubMed ID: 4948154
    [No Abstract]   [Full Text] [Related]  

  • 24. A purposely designed neural signal amplifier for short interval stimulation and recording microneurography using a common electrode.
    Shek S; Willey K; McNulty PA
    J Neurosci Methods; 2006 Apr; 152(1-2):130-5. PubMed ID: 16216334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of signal distortion through metal microelectrode recording circuits and filters.
    Nelson MJ; Pouget P; Nilsen EA; Patten CD; Schall JD
    J Neurosci Methods; 2008 Mar; 169(1):141-57. PubMed ID: 18242715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays.
    Billoint O; Rostaing JP; Charvet G; Yvert B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6070-3. PubMed ID: 18003399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.
    Chen CH; McCullagh EA; Pun SH; Mak PU; Vai MI; Mak PI; Klug A; Lei TC
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):557-568. PubMed ID: 28221990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Low Noise Amplifier for Neural Spike Recording Interfaces.
    Ruiz-Amaya J; Rodriguez-Perez A; Delgado-Restituto M
    Sensors (Basel); 2015 Sep; 15(10):25313-35. PubMed ID: 26437411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tools for physiology labs: an inexpensive high-performance amplifier and electrode for extracellular recording.
    Land BR; Wyttenbach RA; Johnson BR
    J Neurosci Methods; 2001 Mar; 106(1):47-55. PubMed ID: 11248340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A floating 5 μm-diameter needle electrode on the tissue for damage-reduced chronic neuronal recording in mice.
    Yamashita K; Sawahata H; Yamagiwa S; Yokoyama S; Numano R; Koida K; Kawano T
    Lab Chip; 2022 Feb; 22(4):747-756. PubMed ID: 35044407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and measurements of 64-channel ASIC for neural signal recording.
    Kmon P; Zoladz M; Grybos P; Szczygiel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():528-31. PubMed ID: 19964226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new 3D finite element model of extracellular action potentials recording with a microelectrode in a tissue slice.
    Moulin C; Glière A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():603-6. PubMed ID: 17946407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Which elements of the mammalian central nervous system are excited by low current stimulation with microelectrodes?
    Rattay F; Wenger C
    Neuroscience; 2010 Oct; 170(2):399-407. PubMed ID: 20659531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NanoTouch: intracellular recording using transmembrane conductive nanoparticles.
    Saito ML
    J Neurophysiol; 2019 Nov; 122(5):2016-2026. PubMed ID: 31483705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices.
    Gunning DE; Beggs JM; Dabrowski W; Hottowy P; Kenney CJ; Sher A; Litke AM; Mathieson K
    J Neural Eng; 2013 Feb; 10(1):016007. PubMed ID: 23234809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode.
    Nam Y; Brown EA; Ross JD; Blum RA; Wheeler BC; DeWeerth SP
    J Neurosci Methods; 2009 Mar; 178(1):99-102. PubMed ID: 19100770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues.
    González C; Rodríguez M
    J Neurosci Methods; 1997 Apr; 72(2):189-95. PubMed ID: 9133584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A methodology for fast assessments to the electrical activity of barrel fields in vivo: from population inputs to single unit outputs.
    Riera JJ; Goto T; Kawashima R
    Front Neural Circuits; 2014; 8():4. PubMed ID: 24550785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.