These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 35787038)
1. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Kar M; Dar F; Welsh TJ; Vogel LT; Kühnemuth R; Majumdar A; Krainer G; Franzmann TM; Alberti S; Seidel CAM; Knowles TPJ; Hyman AA; Pappu RV Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2202222119. PubMed ID: 35787038 [TBL] [Abstract][Full Text] [Related]
2. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Farag M; Cohen SR; Borcherds WM; Bremer A; Mittag T; Pappu RV Nat Commun; 2022 Dec; 13(1):7722. PubMed ID: 36513655 [TBL] [Abstract][Full Text] [Related]
3. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Choi JM; Holehouse AS; Pappu RV Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090 [TBL] [Abstract][Full Text] [Related]
4. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mittag T; Pappu RV Mol Cell; 2022 Jun; 82(12):2201-2214. PubMed ID: 35675815 [TBL] [Abstract][Full Text] [Related]
5. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Ginell GM; Holehouse AS Methods Mol Biol; 2023; 2563():95-116. PubMed ID: 36227469 [TBL] [Abstract][Full Text] [Related]
6. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions. Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV bioRxiv; 2023 Mar; ():. PubMed ID: 36993212 [TBL] [Abstract][Full Text] [Related]
7. Solutes unmask differences in clustering versus phase separation of FET proteins. Kar M; Vogel LT; Chauhan G; Felekyan S; Ausserwöger H; Welsh TJ; Dar F; Kamath AR; Knowles TPJ; Hyman AA; Seidel CAM; Pappu RV Nat Commun; 2024 May; 15(1):4408. PubMed ID: 38782886 [TBL] [Abstract][Full Text] [Related]
8. Protein nanocondensates: the next frontier. Toledo PL; Gianotti AR; Vazquez DS; Ermácora MR Biophys Rev; 2023 Aug; 15(4):515-530. PubMed ID: 37681092 [TBL] [Abstract][Full Text] [Related]
9. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657 [TBL] [Abstract][Full Text] [Related]
11. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV Nat Commun; 2023 Sep; 14(1):5527. PubMed ID: 37684240 [TBL] [Abstract][Full Text] [Related]
12. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions. Kar M; Vogel LT; Chauhan G; Ausserwöger H; Welsh TJ; Kamath AR; Knowles TPJ; Hyman AA; Seidel CAM; Pappu RV bioRxiv; 2023 Aug; ():. PubMed ID: 37609232 [TBL] [Abstract][Full Text] [Related]
13. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions. Kar M; Vogel LT; Chauhan G; Ausserwöger H; Welsh TJ; Kamath AR; Knowles TPJ; Hyman AA; Seidel CAM; Pappu RV Res Sq; 2023 Sep; ():. PubMed ID: 37790538 [TBL] [Abstract][Full Text] [Related]
14. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions. Pappu R; Farag M; Borcherds W; Bremer A; Mittag T Res Sq; 2023 May; ():. PubMed ID: 37205474 [TBL] [Abstract][Full Text] [Related]
15. Reversible Disulfide Bond Cross-Links as Tunable Levers of Phase Separation in Designer Biomolecular Condensates. Mondal M; Jankoski PE; Lee LD; Dinakarapandian DM; Chiu TY; Swetman WS; Wu H; Paravastu AK; Clemons TD; Rangachari V J Am Chem Soc; 2024 Sep; 146(36):25299-25311. PubMed ID: 39196681 [TBL] [Abstract][Full Text] [Related]
16. Liquid state theory study of the phase behavior and macromolecular scale structure of model biomolecular condensates. Shi G; Schweizer KS J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37489654 [TBL] [Abstract][Full Text] [Related]
17. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Wang J; Choi JM; Holehouse AS; Lee HO; Zhang X; Jahnel M; Maharana S; Lemaitre R; Pozniakovsky A; Drechsel D; Poser I; Pappu RV; Alberti S; Hyman AA Cell; 2018 Jul; 174(3):688-699.e16. PubMed ID: 29961577 [TBL] [Abstract][Full Text] [Related]
18. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules. Shillcock JC; Lagisquet C; Alexandre J; Vuillon L; Ipsen JH Soft Matter; 2022 Sep; 18(35):6674-6693. PubMed ID: 36004748 [TBL] [Abstract][Full Text] [Related]
19. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Guo G; Wang X; Zhang Y; Li T Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of a Human Microprotein Promotes Dissociation of Biomolecular Condensates. Na Z; Luo Y; Cui DS; Khitun A; Smelyansky S; Loria JP; Slavoff SA J Am Chem Soc; 2021 Aug; 143(32):12675-12687. PubMed ID: 34346674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]