These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35787038)

  • 21. Ligand effects on phase separation of multivalent macromolecules.
    Ruff KM; Dar F; Pappu RV
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.
    Harmon TS; Holehouse AS; Rosen MK; Pappu RV
    Elife; 2017 Nov; 6():. PubMed ID: 29091028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule and ensemble methods to probe RNP nucleation and condensate properties.
    Rhine K; Skanchy S; Myong S
    Methods; 2022 Jan; 197():74-81. PubMed ID: 33610691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA in formation and regulation of transcriptional condensates.
    Sharp PA; Chakraborty AK; Henninger JE; Young RA
    RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of Protein Phase Diagrams by Centrifugation.
    Milkovic NM; Mittag T
    Methods Mol Biol; 2020; 2141():685-702. PubMed ID: 32696384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 'RNA modulation of transport properties and stability in phase-separated condensates.
    Tejedor AR; Garaizar A; Ramírez J; Espinosa JR
    Biophys J; 2021 Dec; 120(23):5169-5186. PubMed ID: 34762868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation.
    Lan C; Kim J; Ulferts S; Aprile-Garcia F; Weyrauch S; Anandamurugan A; Grosse R; Sawarkar R; Reinhardt A; Hugel T
    Nat Commun; 2023 Aug; 14(1):4831. PubMed ID: 37582808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleation landscape of biomolecular condensates.
    Shimobayashi SF; Ronceray P; Sanders DW; Haataja MP; Brangwynne CP
    Nature; 2021 Nov; 599(7885):503-506. PubMed ID: 34552246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD.
    Ostendorp A; Ostendorp S; Zhou Y; Chaudron Z; Wolffram L; Rombi K; von Pein L; Falke S; Jeffries CM; Svergun DI; Betzel C; Morris RJ; Kragler F; Kehr J
    J Biol Chem; 2022 Dec; 298(12):102631. PubMed ID: 36273579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates.
    Marshall AC; Cummins J; Kobelke S; Zhu T; Widagdo J; Anggono V; Hyman A; Fox AH; Bond CS; Lee M
    J Mol Biol; 2023 Dec; 435(24):168364. PubMed ID: 37952770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible disulfide bond crosslinks as tunable levers of phase separation in designer biomolecular condensates.
    Mondal M; Jankoski PE; Lee LD; Dinakarapandian DM; Chiu TY; Swetman WS; Wu H; Paravastu AK; Clemons TD; Rangachari V
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The maximum solubility product marks the threshold for condensation of multivalent biomolecules.
    Chattaraj A; Loew LM
    Biophys J; 2023 May; 122(9):1678-1690. PubMed ID: 36987392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates.
    Rai SK; Khanna R; Avni A; Mukhopadhyay S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2216338120. PubMed ID: 36595668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase separation in amino acid mixtures is governed by composition.
    De Sancho D
    Biophys J; 2022 Nov; 121(21):4119-4127. PubMed ID: 36181270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils.
    Kar M; Posey AE; Dar F; Hyman AA; Pappu RV
    Biochemistry; 2021 Nov; 60(43):3213-3222. PubMed ID: 34648275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.