These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35787182)

  • 1. Biosynthesis of 3-thia-α-amino acids on a carrier peptide.
    Yu Y; van der Donk WA
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2205285119. PubMed ID: 35787182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products.
    Kudo F; Miyanaga A; Eguchi T
    J Ind Microbiol Biotechnol; 2019 Mar; 46(3-4):515-536. PubMed ID: 30291534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products.
    Ting CP; Funk MA; Halaby SL; Zhang Z; Gonen T; van der Donk WA
    Science; 2019 Jul; 365(6450):280-284. PubMed ID: 31320540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring.
    Zha L; Jiang Y; Henke MT; Wilson MR; Wang JX; Kelleher NL; Balskus EP
    Nat Chem Biol; 2017 Oct; 13(10):1063-1065. PubMed ID: 28805802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of natural products containing β-amino acids.
    Kudo F; Miyanaga A; Eguchi T
    Nat Prod Rep; 2014 Aug; 31(8):1056-73. PubMed ID: 24926851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chain initiation in the leinamycin-producing hybrid nonribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140. Discrete, monofunctional adenylation enzyme and peptidyl carrier protein that directly load D-alanine.
    Tang GL; Cheng YQ; Shen B
    J Biol Chem; 2007 Jul; 282(28):20273-82. PubMed ID: 17502372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo biosynthesis of terminal alkyne-labeled natural products.
    Zhu X; Liu J; Zhang W
    Nat Chem Biol; 2015 Feb; 11(2):115-20. PubMed ID: 25531891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring enzymes acting on carrier protein-tethered substrates in natural product biosynthesis.
    Lin S; Huang T; Shen B
    Methods Enzymol; 2012; 516():321-43. PubMed ID: 23034236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases.
    Liu Y; Zheng T; Bruner SD
    Chem Biol; 2011 Nov; 18(11):1482-8. PubMed ID: 22118682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways.
    Tremblay N; Hill P; Conway KR; Boddy CN
    Methods Mol Biol; 2016; 1401():233-52. PubMed ID: 26831712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis.
    Patteson JB; Fortinez CM; Putz AT; Rodriguez-Rivas J; Bryant LH; Adhikari K; Weigt M; Schmeing TM; Li B
    J Am Chem Soc; 2022 Aug; 144(31):14057-14070. PubMed ID: 35895935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying trans-acting enzymes that target carrier protein-bound amino acids during nonribosomal peptide synthesis.
    Greule A; Charkoudian LK; Cryle MJ
    Methods Enzymol; 2019; 617():113-154. PubMed ID: 30784400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis.
    Lai JR; Koglin A; Walsh CT
    Biochemistry; 2006 Dec; 45(50):14869-79. PubMed ID: 17154525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonribosomal Peptide Extension by a Peptide Amino-Acyl tRNA Ligase.
    Zhang Z; van der Donk WA
    J Am Chem Soc; 2019 Dec; 141(50):19625-19633. PubMed ID: 31751505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria.
    Chen Y; Ntai I; Ju KS; Unger M; Zamdborg L; Robinson SJ; Doroghazi JR; Labeda DP; Metcalf WW; Kelleher NL
    J Proteome Res; 2012 Jan; 11(1):85-94. PubMed ID: 21978092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the biosynthesis of fungal nonribosomal peptides.
    Zhang L; Wang C; Chen K; Zhong W; Xu Y; Molnár I
    Nat Prod Rep; 2023 Jan; 40(1):62-88. PubMed ID: 35796260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
    Kubiak X; Polsinelli I; Chavas LMG; Fyfe CD; Guillot A; Fradale L; Brewee C; Grimaldi S; Gerbaud G; Thureau A; Legrand P; Berteau O; Benjdia A
    Nat Chem Biol; 2024 Mar; 20(3):382-391. PubMed ID: 38158457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate Specificity of the Flavoenzyme BhaC
    Daniels PN; van der Donk WA
    Biochemistry; 2023 Jan; 62(2):378-387. PubMed ID: 35613706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and gene expression evidence of nonribosomal peptide and polyketide production among ruminal bacteria: a potential role in niche colonization?
    Moreira SM; de Oliveira Mendes TA; Santanta MF; Huws SA; Creevey CJ; Mantovani HC
    FEMS Microbiol Ecol; 2020 Feb; 96(2):. PubMed ID: 31825517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products.
    Lewis JK; Jochimsen AS; Lefave SJ; Young AP; Kincannon WM; Roberts AG; Kieber-Emmons MT; Bandarian V
    Biochemistry; 2021 Nov; 60(45):3347-3361. PubMed ID: 34730336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.