These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 35787198)
21. Relationship between epidermal growth factor receptor mutations and CT features in patients with lung adenocarcinoma. Zhang G; Zhao Z; Cao Y; Zhang J; Li S; Deng L; Zhou J Clin Radiol; 2021 Jun; 76(6):473.e17-473.e24. PubMed ID: 33731263 [TBL] [Abstract][Full Text] [Related]
22. Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models. Pan Z; Hu G; Zhu Z; Tan W; Han W; Zhou Z; Song W; Yu Y; Song L; Jin Z Radiology; 2024 Apr; 311(1):e232057. PubMed ID: 38591974 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive Study of Surgical Treated Lung Adenocarcinoma with Ground Glass Nodule Component. Xu Y; Zheng M; Wang N; Wang R Med Sci Monit; 2019 Nov; 25():8492-8498. PubMed ID: 31710020 [TBL] [Abstract][Full Text] [Related]
24. Solitary pulmonary nodular lung adenocarcinoma: correlation of histopathologic scoring and patient survival with imaging biomarkers. Lee HY; Jeong JY; Lee KS; Kim HJ; Han J; Kim BT; Kim J; Shim YM; Kim JH; Song I Radiology; 2012 Sep; 264(3):884-93. PubMed ID: 22829686 [TBL] [Abstract][Full Text] [Related]
25. Relationship between EGFR mutation and computed tomography characteristics of the lung in patients with lung adenocarcinoma. Qiu X; Yuan H; Sima B Thorac Cancer; 2019 Feb; 10(2):170-174. PubMed ID: 30516345 [TBL] [Abstract][Full Text] [Related]
26. Computed tomography-based 3D convolutional neural network deep learning model for predicting micropapillary or solid growth pattern of invasive lung adenocarcinoma. Huo J; Min X; Luo T; Lv F; Feng Y; Fan Q; Wang D; Ma D; Li Q Radiol Med; 2024 May; 129(5):776-784. PubMed ID: 38512613 [TBL] [Abstract][Full Text] [Related]
27. CT texture analysis-based nomogram for the preoperative prediction of visceral pleural invasion in cT1N0M0 lung adenocarcinoma: an external validation cohort study. Zuo Z; Li Y; Peng K; Li X; Tan Q; Mo Y; Lan Y; Zeng W; Qi W Clin Radiol; 2022 Mar; 77(3):e215-e221. PubMed ID: 34916048 [TBL] [Abstract][Full Text] [Related]
28. Value of CT features for predicting EGFR mutations and ALK positivity in patients with lung adenocarcinoma. Han X; Fan J; Li Y; Cao Y; Gu J; Jia X; Wang Y; Shi H Sci Rep; 2021 Mar; 11(1):5679. PubMed ID: 33707479 [TBL] [Abstract][Full Text] [Related]
29. Clinical Value of Chen Z; Jiang S; Li Z; Rao L; Zhang X Acad Radiol; 2020 Dec; 27(12):1691-1699. PubMed ID: 32063495 [TBL] [Abstract][Full Text] [Related]
30. Use of a Commercially Available Deep Learning Algorithm to Measure the Solid Portions of Lung Cancer Manifesting as Subsolid Lesions at CT: Comparisons with Radiologists and Invasive Component Size at Pathologic Examination. Ahn Y; Lee SM; Noh HN; Kim W; Choe J; Do KH; Seo JB Radiology; 2021 Apr; 299(1):202-210. PubMed ID: 33529136 [TBL] [Abstract][Full Text] [Related]
31. Prediction of EGFR mutations by conventional CT-features in advanced pulmonary adenocarcinoma. Chen Y; Yang Y; Ma L; Zhu H; Feng T; Jiang S; Wei Y; Wang T; Sun X Eur J Radiol; 2019 Mar; 112():44-51. PubMed ID: 30777218 [TBL] [Abstract][Full Text] [Related]
32. Development of a novel combined nomogram integrating deep-learning-assisted CT texture and clinical-radiological features to predict the invasiveness of clinical stage IA part-solid lung adenocarcinoma: a multicentre study. Zuo Z; Zeng W; Peng K; Mao Y; Wu Y; Zhou Y; Qi W Clin Radiol; 2023 Oct; 78(10):e698-e706. PubMed ID: 37487842 [TBL] [Abstract][Full Text] [Related]
33. CT features associated with EGFR mutations and ALK positivity in patients with multiple primary lung adenocarcinomas. Han X; Fan J; Gu J; Li Y; Yang M; Liu T; Li N; Zeng W; Shi H Cancer Imaging; 2020 Jul; 20(1):51. PubMed ID: 32690092 [TBL] [Abstract][Full Text] [Related]
34. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Wang S; Shi J; Ye Z; Dong D; Yu D; Zhou M; Liu Y; Gevaert O; Wang K; Zhu Y; Zhou H; Liu Z; Tian J Eur Respir J; 2019 Mar; 53(3):. PubMed ID: 30635290 [TBL] [Abstract][Full Text] [Related]
35. Correlation between epidermal growth factor receptor mutation and histologic subtypes or characteristics of computed tomography findings in patients with resected pulmonary adenocarcinoma. Wang D; Yan N; Yang X; Ge Y; Xu D; Shao G; Peng Z J Cancer Res Ther; 2018 Jan; 14(1):240-244. PubMed ID: 29516992 [TBL] [Abstract][Full Text] [Related]
36. Lung Adenocarcinoma: CT Features Associated with Spread through Air Spaces. Kim SK; Kim TJ; Chung MJ; Kim TS; Lee KS; Zo JI; Shim YM Radiology; 2018 Dec; 289(3):831-840. PubMed ID: 30179108 [TBL] [Abstract][Full Text] [Related]
37. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules. Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251 [TBL] [Abstract][Full Text] [Related]
38. Lung Adenocarcinoma at CT with 0.25-mm Section Thickness and a 2048 Matrix: High-Spatial-Resolution Imaging for Predicting Invasiveness. Yanagawa M; Tsubamoto M; Satoh Y; Hata A; Miyata T; Yoshida Y; Kikuchi N; Kurakami H; Tomiyama N Radiology; 2020 Nov; 297(2):462-471. PubMed ID: 32897161 [TBL] [Abstract][Full Text] [Related]
39. Predictive CT Features of Visceral Pleural Invasion by T1-Sized Peripheral Pulmonary Adenocarcinomas Manifesting as Subsolid Nodules. Ahn SY; Park CM; Jeon YK; Kim H; Lee JH; Hwang EJ; Goo JM AJR Am J Roentgenol; 2017 Sep; 209(3):561-566. PubMed ID: 28639833 [TBL] [Abstract][Full Text] [Related]
40. Solid Attenuation Components Attention Deep Learning Model to Predict Micropapillary and Solid Patterns in Lung Adenocarcinomas on Computed Tomography. Chen LW; Yang SM; Chuang CC; Wang HJ; Chen YC; Lin MW; Hsieh MS; Antonoff MB; Chang YC; Wu CC; Pan T; Chen CM Ann Surg Oncol; 2022 Nov; 29(12):7473-7482. PubMed ID: 35789301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]