BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35788357)

  • 1. Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Champreda V; Eurwilaichitr L; Chantasingh D; Pootanakit K
    J Biotechnol; 2022 Aug; 355():53-64. PubMed ID: 35788357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K
    BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae.
    Chen T; Chen Z; Zhang H; Li Y; Yao L; Zeng B; Zhang Z
    Folia Microbiol (Praha); 2024 Apr; 69(2):373-382. PubMed ID: 37490214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 7. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis.
    Shen W; Zhang J; Geng B; Qiu M; Hu M; Yang Q; Bao W; Xiao Y; Zheng Y; Peng W; Zhang G; Ma L; Yang S
    Microb Cell Fact; 2019 Oct; 18(1):162. PubMed ID: 31581942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae.
    Katayama T; Maruyama JI
    J Biosci Bioeng; 2022 Apr; 133(4):353-361. PubMed ID: 35101371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells.
    Lin L; He X; Zhao T; Gu L; Liu Y; Liu X; Liu H; Yang F; Tu M; Tang L; Ge X; Liu C; Zhao J; Song Z; Qu J; Gu F
    Mol Ther; 2018 Nov; 26(11):2650-2657. PubMed ID: 30274789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency.
    Li B; Zhao W; Luo X; Zhang X; Li C; Zeng C; Dong Y
    Nat Biomed Eng; 2017 May; 1(5):. PubMed ID: 28840077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Split CRISPR-Cpf1 Platform for Inducible Gene Activation.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2023; 2577():229-240. PubMed ID: 36173577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells.
    Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH
    Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of a CRISPR/Cpf1 gene editing system in silkworm Bombyx mori].
    Dong Z; Qin Q; Zhang X; Li K; Chen P; Pan M
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4342-4350. PubMed ID: 34984879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
    Yeo WL; Heng E; Tan LL; Lim YW; Lim YH; Hoon S; Zhao H; Zhang MM; Wong FT
    Biotechnol Bioeng; 2019 Sep; 116(9):2330-2338. PubMed ID: 31090220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang.
    Bin Moon S; Lee JM; Kang JG; Lee NE; Ha DI; Kim DY; Kim SH; Yoo K; Kim D; Ko JH; Kim YS
    Nat Commun; 2018 Sep; 9(1):3651. PubMed ID: 30194297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida.
    Endo A; Masafumi M; Kaya H; Toki S
    Sci Rep; 2016 Dec; 6():38169. PubMed ID: 27905529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
    Tang X; Lowder LG; Zhang T; Malzahn AA; Zheng X; Voytas DF; Zhong Z; Chen Y; Ren Q; Li Q; Kirkland ER; Zhang Y; Qi Y
    Nat Plants; 2017 Feb; 3():17018. PubMed ID: 28211909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.