These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35788454)

  • 1. Identify Multiple Gene-Drug Common Modules via Constrained Graph Matching.
    Chen J; Huang J; Liao Y; Zhu L; Cai H
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4794-4805. PubMed ID: 35788454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Multidimensional Regulatory Modules Through Multi-Graph Matching With Network Constraints.
    Chen J; Han G; Xu A; Cai H
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):987-998. PubMed ID: 31295100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying miRNA-Gene Common and Specific Regulatory Modules for Cancer Subtyping by a High-Order Graph Matching Model.
    Chen J; Han G; Xu A; Akutsu T; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):421-431. PubMed ID: 35320104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of gene-drug common module identification methods using pharmacogenomics data.
    Huang J; Chen J; Zhang B; Zhu L; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networks.
    Shi X; Gu J; Chen X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S4. PubMed ID: 24564939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding Correlated Patterns via High-Order Matching for Multiple Sourced Biological Data.
    Yang X; Han G; Chen J; Cai H
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1017-1025. PubMed ID: 30130172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tensor-Based Algorithm for High-Order Graph Matching.
    Duchenne O; Bach F; Kweon IS; Ponce J
    IEEE Trans Pattern Anal Mach Intell; 2011 Dec; 33(12):2383-95. PubMed ID: 21646677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ranking cancer drivers via betweenness-based outlier detection and random walks.
    Erten C; Houdjedj A; Kazan H
    BMC Bioinformatics; 2021 Feb; 22(1):62. PubMed ID: 33568049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing higher-order miRNA-mRNA interaction networks in prostate cancer via hypergraph-based learning.
    Kim SJ; Ha JW; Zhang BT
    BMC Syst Biol; 2013 Jun; 7():47. PubMed ID: 23782521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix factorization methods for integrative cancer genomics.
    Zhang S; Zhou XJ
    Methods Mol Biol; 2014; 1176():229-42. PubMed ID: 25030932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Tumor Genomic Data with Cell Lines Using Multi-dimensional Network Modules Improves Cancer Pharmacogenomics.
    Webber JT; Kaushik S; Bandyopadhyay S
    Cell Syst; 2018 Nov; 7(5):526-536.e6. PubMed ID: 30414925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem With Extension to Hypergraph and Multiple-Graph Matching.
    Wang R; Yan J; Yang X
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5261-5279. PubMed ID: 33961550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSubgraph: integrative genomics for subgroup discovery in hepatocellular carcinoma using graph mining and mixture models.
    Ozdemir B; Abd-Almageed W; Roessler S; Wang XW
    PLoS One; 2013; 8(11):e78624. PubMed ID: 24223834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network-based matrix factorization framework for ceRNA co-modules recognition of cancer genomic data.
    Wang Y; Zhou G; Guan T; Wang Y; Xuan C; Ding T; Gao J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Multilinear Optimization Framework for Hypergraph Matching.
    Nguyen Q; Tudisco F; Gautier A; Hein M
    IEEE Trans Pattern Anal Mach Intell; 2017 Jun; 39(6):1054-1075. PubMed ID: 27254858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Cancer Driver Modules Based on Graph Clustering from Multiomics Data.
    Zhang W; Wang SL; Liu Y
    J Comput Biol; 2021 Oct; 28(10):1007-1020. PubMed ID: 34529511
    [No Abstract]   [Full Text] [Related]  

  • 19. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.