These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35788454)

  • 21. A network-based machine-learning framework to identify both functional modules and disease genes.
    Yang K; Lu K; Wu Y; Yu J; Liu B; Zhao Y; Chen J; Zhou X
    Hum Genet; 2021 Jun; 140(6):897-913. PubMed ID: 33409574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Integrative Framework of Heterogeneous Genomic Data for Cancer Dynamic Modules Based on Matrix Decomposition.
    Ma X; Sun P; Gong M
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):305-316. PubMed ID: 32750874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying potential association on gene-disease network via dual hypergraph regularized least squares.
    Yang H; Ding Y; Tang J; Guo F
    BMC Genomics; 2021 Aug; 22(1):605. PubMed ID: 34372777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Module Detection in Temporal Attributed Networks of Cancers.
    Li D; Zhang S; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2219-2230. PubMed ID: 33780342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust anatomical correspondence detection by hierarchical sparse graph matching.
    Guo Y; Wu G; Jiang J; Shen D
    IEEE Trans Med Imaging; 2013 Feb; 32(2):268-77. PubMed ID: 23070298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased entropy of signal transduction in the cancer metastasis phenotype.
    Teschendorff AE; Severini S
    BMC Syst Biol; 2010 Jul; 4():104. PubMed ID: 20673354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrative network analysis for survival-associated gene-gene interactions across multiple genomic profiles in ovarian cancer.
    Jeong HH; Leem S; Wee K; Sohn KA
    J Ovarian Res; 2015 Jul; 8():42. PubMed ID: 26138921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypergraph models of biological networks to identify genes critical to pathogenic viral response.
    Feng S; Heath E; Jefferson B; Joslyn C; Kvinge H; Mitchell HD; Praggastis B; Eisfeld AJ; Sims AC; Thackray LB; Fan S; Walters KB; Halfmann PJ; Westhoff-Smith D; Tan Q; Menachery VD; Sheahan TP; Cockrell AS; Kocher JF; Stratton KG; Heller NC; Bramer LM; Diamond MS; Baric RS; Waters KM; Kawaoka Y; McDermott JE; Purvine E
    BMC Bioinformatics; 2021 May; 22(1):287. PubMed ID: 34051754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying cancer prognostic modules by module network analysis.
    Zhou XH; Chu XY; Xue G; Xiong JH; Zhang HY
    BMC Bioinformatics; 2019 Feb; 20(1):85. PubMed ID: 30777030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting stage-specific cancer related genes and their dynamic modules by integrating multiple datasets.
    Aouiche C; Chen B; Shang X
    BMC Bioinformatics; 2019 May; 20(Suppl 7):194. PubMed ID: 31074385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying miRNA sponge modules using biclustering and regulatory scores.
    Zhang J; Le TD; Liu L; Li J
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):44. PubMed ID: 28361682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viewing cancer genes from co-evolving gene modules.
    Zhu J; Xiao H; Shen X; Wang J; Zou J; Zhang L; Yang D; Ma W; Yao C; Gong X; Zhang M; Zhang Y; Guo Z
    Bioinformatics; 2010 Apr; 26(7):919-24. PubMed ID: 20176579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data.
    Chen J; Zhang S
    Bioinformatics; 2016 Jun; 32(11):1724-32. PubMed ID: 26833341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data.
    Luo J; Xiang G; Pan C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):51-59. PubMed ID: 28092569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning Kinematic Structure Correspondences Using Multi-Order Similarities.
    Chang HJ; Fischer T; Petit M; Zambelli M; Demiris Y
    IEEE Trans Pattern Anal Mach Intell; 2018 Dec; 40(12):2920-2934. PubMed ID: 29989982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.