These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35788853)

  • 1. Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.
    Sharif S; Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2022 Aug; 49(4):445-453. PubMed ID: 35788853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.
    Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2018 Feb; 45(1):35-47. PubMed ID: 28550375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fisher information matrix for nonlinear mixed effects multiple response models: evaluation of the appropriateness of the first order linearization using a pharmacokinetic/pharmacodynamic model.
    Bazzoli C; Retout S; Mentré F
    Stat Med; 2009 Jun; 28(14):1940-56. PubMed ID: 19266541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution of the Michaelis-Menten equation using the decomposition method.
    Sonnad JR; Goudar CT
    Math Biosci Eng; 2009 Jan; 6(1):173-88. PubMed ID: 19292514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of various estimation methods for the parameters of Michaelis-Menten equation based on
    Cho YS; Lim HS
    Transl Clin Pharmacol; 2018 Mar; 26(1):39-47. PubMed ID: 32055546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.
    Wu H; Xue H; Kumar A
    Biometrics; 2012 Jun; 68(2):344-52. PubMed ID: 22376200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Linearization in a WNT Signaling Model.
    Ciușdel CF; Coman S; Boldișor C; Kessler T; Muradyan A; Kovachev A; Lehrach H; Wierling C; Itu LM
    Comput Math Methods Med; 2019; 2019():8461820. PubMed ID: 31281412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sieve Estimation of Constant and Time-Varying Coefficients in Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and Measurement Error.
    Xue H; Miao H; Wu H
    Ann Stat; 2010 Jan; 38(4):2351-2387. PubMed ID: 21132064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design optimality for models defined by a system of ordinary differential equations.
    Rodríguez-Díaz JM; Sánchez-León G
    Biom J; 2014 Sep; 56(5):886-900. PubMed ID: 24827551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects.
    Chan PL; Jacqmin P; Lavielle M; McFadyen L; Weatherley B
    J Pharmacokinet Pharmacodyn; 2011 Feb; 38(1):41-61. PubMed ID: 21088872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.
    Tashkova K; Korošec P; Silc J; Todorovski L; Džeroski S
    BMC Syst Biol; 2011 Oct; 5():159. PubMed ID: 21989196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-level time-domain decomposition based distributed method for numerical solutions of pharmacokinetic models.
    Liu L; Lai CH; Zhou SD; Xie F; Rui L
    Comput Biol Med; 2011 Apr; 41(4):221-7. PubMed ID: 21396631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient method-of-lines simulation procedure for organic semiconductor devices.
    Rogel-Salazar J; Bradley DD; Cash JR; Demello JC
    Phys Chem Chem Phys; 2009 Mar; 11(10):1636-46. PubMed ID: 19240942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carleman linearization approach for chemical kinetics integration toward quantum computation.
    Akiba T; Morii Y; Maruta K
    Sci Rep; 2023 Mar; 13(1):3935. PubMed ID: 36894647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic sensitivity analysis of biological systems.
    Wu WH; Wang FS; Chang MS
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S17. PubMed ID: 19091016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving delay differential equations in S-ADAPT by method of steps.
    Bauer RJ; Mo G; Krzyzanski W
    Comput Methods Programs Biomed; 2013 Sep; 111(3):715-34. PubMed ID: 23810514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach.
    Wu L; Qiu X; Yuan YX; Wu H
    J Am Stat Assoc; 2019; 114(526):657-667. PubMed ID: 34385718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Estimation of Parameters in ODE Models Using WENDy: Weak-Form Estimation of Nonlinear Dynamics.
    Bortz DM; Messenger DA; Dukic V
    Bull Math Biol; 2023 Oct; 85(11):110. PubMed ID: 37796411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and Efficiency in Fixed-Point Neural ODE Solvers.
    Hopkins M; Furber S
    Neural Comput; 2015 Oct; 27(10):2148-82. PubMed ID: 26313605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.