These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35789067)

  • 1. Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production.
    Dong K; Le TA; Nakibli Y; Schleusener A; Wächtler M; Amirav L
    ChemSusChem; 2022 Sep; 15(17):e202200804. PubMed ID: 35789067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect Photon-to-Hydrogen Conversion Efficiency.
    Kalisman P; Nakibli Y; Amirav L
    Nano Lett; 2016 Mar; 16(3):1776-81. PubMed ID: 26788824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production.
    Dong K; Le TA; Nakibli Y; Schleusener A; Wächtler M; Amirav L
    ChemSusChem; 2022 Sep; 15(17):e202201525. PubMed ID: 36000785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Other Dimension-Tuning Hole Extraction via Nanorod Width.
    Rosner T; Pavlopoulos NG; Shoyhet H; Micheel M; Wächtler M; Adir N; Amirav L
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel.
    Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.
    Tian B; Tian B; Smith B; Scott MC; Hua R; Lei Q; Tian Y
    Nat Commun; 2018 Apr; 9(1):1397. PubMed ID: 29643347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods.
    Simon T; Bouchonville N; Berr MJ; Vaneski A; Adrović A; Volbers D; Wyrwich R; Döblinger M; Susha AS; Rogach AL; Jäckel F; Stolarczyk JK; Feldmann J
    Nat Mater; 2014 Nov; 13(11):1013-8. PubMed ID: 25087066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
    Iqbal N; Khan I; Ali A; Qurashi A
    J Adv Res; 2022 Feb; 36():15-26. PubMed ID: 35127161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting.
    Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM
    ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.