These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35789157)

  • 41. Intermolecular relaxation has little effect on intra-peptide exchange-transferred NOE intensities.
    Zabell AP; Post CB
    J Biomol NMR; 2002 Apr; 22(4):303-15. PubMed ID: 12018479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMR structure determination of protein-ligand complexes by lanthanide labeling.
    Pintacuda G; John M; Su XC; Otting G
    Acc Chem Res; 2007 Mar; 40(3):206-12. PubMed ID: 17370992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR solution structure determination of large RNA-protein complexes.
    Yadav DK; Lukavsky PJ
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():57-81. PubMed ID: 27888840
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional 13C-detected CH3-TOCSY using selectively protonated proteins: facile methyl resonance assignment and protein structure determination.
    Jordan JB; Kovacs H; Wang Y; Mobli M; Luo R; Anklin C; Hoch JC; Kriwacki RW
    J Am Chem Soc; 2006 Jul; 128(28):9119-28. PubMed ID: 16834385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints.
    Tang C; Clore GM
    J Biomol NMR; 2006 Sep; 36(1):37-44. PubMed ID: 16967193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of protein-ligand binding modes using complexation-induced changes in (1)h NMR chemical shift.
    Cioffi M; Hunter CA; Packer MJ; Spitaleri A
    J Med Chem; 2008 Apr; 51(8):2512-7. PubMed ID: 18366177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated protein fold determination using a minimal NMR constraint strategy.
    Zheng D; Huang YJ; Moseley HN; Xiao R; Aramini J; Swapna GV; Montelione GT
    Protein Sci; 2003 Jun; 12(6):1232-46. PubMed ID: 12761394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of intermolecular transferred-NOE interactions in small and medium size protein complexes: RANTES complexed with a CCR5 N-terminal peptide.
    Abayev M; Srivastava G; Arshava B; Naider F; Anglister J
    FEBS J; 2017 Feb; 284(4):586-601. PubMed ID: 28052516
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An approach for high-throughput structure determination of proteins by NMR spectroscopy.
    Medek A; Olejniczak ET; Meadows RP; Fesik SW
    J Biomol NMR; 2000 Nov; 18(3):229-38. PubMed ID: 11142513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand-induced structural transitions combined with paramagnetic ions facilitate unambiguous NMR assignments of methyl groups in large proteins.
    Mühlberg L; Alarcin T; Maass T; Creutznacher R; Küchler R; Mallagaray A
    J Biomol NMR; 2022 Jun; 76(3):59-74. PubMed ID: 35397749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Observation of intermolecular interactions in large protein complexes by 2D-double difference nuclear Overhauser enhancement spectroscopy: application to the 44 kDa interferon-receptor complex.
    Nudelman I; Akabayov SR; Scherf T; Anglister J
    J Am Chem Soc; 2011 Sep; 133(37):14755-64. PubMed ID: 21819146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solution NMR of supramolecular complexes: providing new insights into function.
    Sprangers R; Velyvis A; Kay LE
    Nat Methods; 2007 Sep; 4(9):697-703. PubMed ID: 17762877
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic methyl assignment in large proteins by the MAGIC algorithm.
    Monneau YR; Rossi P; Bhaumik A; Huang C; Jiang Y; Saleh T; Xie T; Xing Q; Kalodimos CG
    J Biomol NMR; 2017 Dec; 69(4):215-227. PubMed ID: 29098507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes.
    Summers JS; Hoogstraten CG; Britt RD; Base K; Shaw BR; Ribeiro AA; Crumbliss AL
    Inorg Chem; 2001 Dec; 40(26):6547-54. PubMed ID: 11735462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.
    Wang G; Zhang ZT; Jiang B; Zhang X; Li C; Liu M
    Anal Bioanal Chem; 2014 Apr; 406(9-10):2279-88. PubMed ID: 24309626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of molecular alignment tensors without backbone resonance assignment: Aid to rapid analysis of protein-protein interactions.
    Zweckstetter M
    J Biomol NMR; 2003 Sep; 27(1):41-56. PubMed ID: 12878840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes.
    Gross JD; Gelev VM; Wagner G
    J Biomol NMR; 2003 Mar; 25(3):235-42. PubMed ID: 12652135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accurate protein structure modeling using sparse NMR data and homologous structure information.
    Thompson JM; Sgourakis NG; Liu G; Rossi P; Tang Y; Mills JL; Szyperski T; Montelione GT; Baker D
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):9875-80. PubMed ID: 22665781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NMR studies of protein-nucleic acid interactions.
    Varani G; Chen Y; Leeper TC
    Methods Mol Biol; 2004; 278():289-312. PubMed ID: 15318001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.