These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35789162)

  • 21. Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures.
    Bell GI; Anderson EC
    Biophys J; 1967 Jul; 7(4):329-51. PubMed ID: 6069910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
    Rains EK; Andersen HC
    J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stochastic population growth in spatially heterogeneous environments: the density-dependent case.
    Hening A; Nguyen DH; Yin G
    J Math Biol; 2018 Feb; 76(3):697-754. PubMed ID: 28674928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
    Williams B; López-García M; Gillard JJ; Laws TR; Lythe G; Carruthers J; Finnie T; Molina-París C
    Front Immunol; 2021; 12():688257. PubMed ID: 34497601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generalized stochastic compartmental models with Erlang transit times.
    Matis JH; Wehrly TE
    J Pharmacokinet Biopharm; 1990 Dec; 18(6):589-607. PubMed ID: 2280350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single-cell pedigree analysis of alternative stochastic lymphocyte fates.
    Hawkins ED; Markham JF; McGuinness LP; Hodgkin PD
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13457-62. PubMed ID: 19633185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.
    Okorie IE; Akpanta AC; Ohakwe J; Chikezie DC
    Heliyon; 2017 Jun; 3(6):e00296. PubMed ID: 28706998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing.
    Yu FB; Willis L; Chau RM; Zambon A; Horowitz M; Bhaya D; Huang KC; Quake SR
    BMC Biol; 2017 Feb; 15(1):11. PubMed ID: 28196492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell growth and division. 3. Conditions for balanced exponential growth in a mathematical model.
    Bell GI
    Biophys J; 1968 Apr; 8(4):431-44. PubMed ID: 5643273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling non-Markovian dynamics in biochemical reactions.
    Chiarugi D; Falaschi M; Hermith D; Olarte C; Torella L
    BMC Syst Biol; 2015; 9 Suppl 3(Suppl 3):S8. PubMed ID: 26051249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A general approach to non-Markovian compartmental models.
    Matis JH; Wehrly TE
    J Pharmacokinet Biopharm; 1998 Aug; 26(4):437-56. PubMed ID: 10214561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient parametric inference for stochastic biological systems with measured variability.
    Johnston IG
    Stat Appl Genet Mol Biol; 2014 Jun; 13(3):379-90. PubMed ID: 24821877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harvesting and seeding of stochastic populations: analysis and numerical approximation.
    Hening A; Tran KQ
    J Math Biol; 2020 Jul; 81(1):65-112. PubMed ID: 32415374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the absorption probabilities and absorption times of finite homogeneous birth-death processes.
    Tan WY
    Biometrics; 1976 Dec; 32(4):745-52. PubMed ID: 1009223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpreting CFSE obtained division histories of B cells in vitro with Smith-Martin and cyton type models.
    Lee HY; Hawkins E; Zand MS; Mosmann T; Wu H; Hodgkin PD; Perelson AS
    Bull Math Biol; 2009 Oct; 71(7):1649-70. PubMed ID: 19381725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extending the stochastic two-stage model of carcinogenesis to include self-regulation of the nonmalignant cell population.
    Cox LA
    Risk Anal; 1992 Mar; 12(1):129-38. PubMed ID: 1574612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A stochastic SIR network epidemic model with preventive dropping of edges.
    Ball F; Britton T; Leung KY; Sirl D
    J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the impact of correlation between collaterally consanguineous cells on lymphocyte population dynamics.
    Duffy KR; Subramanian VG
    J Math Biol; 2009 Aug; 59(2):255-85. PubMed ID: 18956191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying gene expression variability arising from randomness in cell division times.
    Antunes D; Singh A
    J Math Biol; 2015 Aug; 71(2):437-63. PubMed ID: 25182129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation.
    Vo BN; Drovandi CC; Pettitt AN; Simpson MJ
    Math Biosci; 2015 May; 263():133-42. PubMed ID: 25747415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.