These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35789351)

  • 1. Extended quasiparticle approach to non-resonant and resonant X-ray emission spectroscopy.
    Ohno K; Aoki T
    Phys Chem Chem Phys; 2022 Jul; 24(27):16586-16595. PubMed ID: 35789351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Restricted Open Configuration Interaction with Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case Study.
    Maganas D; DeBeer S; Neese F
    Inorg Chem; 2017 Oct; 56(19):11819-11836. PubMed ID: 28920680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density Functional Theory Based Methods for the Calculation of X-ray Spectroscopy.
    Besley NA
    Acc Chem Res; 2020 Jul; 53(7):1306-1315. PubMed ID: 32613827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant X-ray Emission of Hexagonal Boron Nitride.
    Vinson J; Jach T; Müller M; Unterumsberger R; Beckhoff B
    Phys Rev B; 2017 Nov; 96(20):. PubMed ID: 29333524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Electron BSE@
    Yao Y; Golze D; Rinke P; Blum V; Kanai Y
    J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K- and L-edge X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) Determination of Differential Orbital Covalency (DOC) of Transition Metal Sites.
    Baker ML; Mara MW; Yan JJ; Hodgson KO; Hedman B; Solomon EI
    Coord Chem Rev; 2017 Aug; 345():182-208. PubMed ID: 28970624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol.
    Vaz da Cruz V; Ignatova N; Couto RC; Fedotov DA; Rehn DR; Savchenko V; Norman P; Ågren H; Polyutov S; Niskanen J; Eckert S; Jay RM; Fondell M; Schmitt T; Pietzsch A; Föhlisch A; Gel'mukhanov F; Odelius M; Kimberg V
    J Chem Phys; 2019 Jun; 150(23):234301. PubMed ID: 31228920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Role of the Kohn-Sham Density in the Calculation of the Low-Lying Bethe-Salpeter Excitation Energies.
    Kshirsagar AR; Poloni R
    J Phys Chem A; 2023 Mar; 127(11):2618-2627. PubMed ID: 36913525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TD-DFT simulations of K-edge resonant inelastic X-ray scattering within the restricted subspace approximation.
    Vaz da Cruz V; Eckert S; Föhlisch A
    Phys Chem Chem Phys; 2021 Jan; 23(3):1835-1848. PubMed ID: 33103173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant inelastic X-ray scattering using a miniature dispersive Rowland refocusing spectrometer.
    Ditter AS; Holden WM; Cary SK; Mocko V; Latimer MJ; Nelson EJ; Kozimor SA; Seidler GT
    J Synchrotron Radiat; 2020 Mar; 27(Pt 2):446-454. PubMed ID: 32153283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Building block picture" of the electronic structure of aqueous cysteine derived from resonant inelastic soft X-ray scattering.
    Meyer F; Blum M; Benkert A; Hauschild D; Nagarajan S; Wilks RG; Andersson J; Yang W; Zharnikov M; Bär M; Heske C; Reinert F; Weinhardt L
    J Phys Chem B; 2014 Nov; 118(46):13142-50. PubMed ID: 25341188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure effects from hydrogen bonding in the liquid phase and in chemisorption: an integrated theory and experimental effort.
    Pettersson LG; Nilsson A; Myneni S; Luo Y; Nyberg M; Cavalleri M; Ojamäe L; Näslund LA; Ogasawara H; Odelius M; Pelmenschikov A
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):136-40. PubMed ID: 11512711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method.
    Bagger A; Haarman T; Puig Molina A; Moses PG; Ishii H; Hiraoka N; Wu YH; Tsuei KD; Chorkendorff I; De Groot F
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):296-301. PubMed ID: 28009570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules.
    Norman P; Dreuw A
    Chem Rev; 2018 Aug; 118(15):7208-7248. PubMed ID: 29894157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative theoretical study on core-hole excitation spectra of azafullerene and its derivatives.
    Deng Y; Gao B; Deng M; Luo Y
    J Chem Phys; 2014 Mar; 140(12):124304. PubMed ID: 24697438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods.
    Nascimento DR; Govind N
    Phys Chem Chem Phys; 2022 Jun; 24(24):14680-14691. PubMed ID: 35699090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-electron many-body approach to resonant inelastic X-ray scattering.
    Vorwerk C; Sottile F; Draxl C
    Phys Chem Chem Phys; 2022 Jul; 24(29):17439-17448. PubMed ID: 35708135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic properties of FeSe(1-x)Te(x) probed by x-ray emission and absorption spectroscopy.
    Simonelli L; Saini NL; Mizuguchi Y; Takano Y; Mizokawa T; Baldi G; Monaco G
    J Phys Condens Matter; 2012 Oct; 24(41):415501. PubMed ID: 23006467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.