These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35789356)

  • 1. Research progress on ZnSe and ZnTe anodes for rechargeable batteries.
    Ni W; Li X; Shi LY; Ma J
    Nanoscale; 2022 Jul; 14(27):9609-9635. PubMed ID: 35789356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries.
    Hu Z; Liu Q; Chou SL; Dou SX
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28643429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Heterostructured Bimetallic Selenides on an N-Doped Carbon Nanoframework as Anodes for Ultrastable Na-Ion Batteries.
    Huang F; Wang L; Qin D; Xu Z; Jin M; Chen Y; Zeng X; Dai Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1222-1232. PubMed ID: 34978409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorph Engineering for Boosted Volumetric Na-Ion and Li-Ion Storage.
    Zhang L; Wei Z; Yao S; Gao Y; Jin X; Chen G; Shen Z; Du F
    Adv Mater; 2021 May; 33(20):e2100210. PubMed ID: 33829567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Layered Metallic Vanadium Disulfide for Rechargeable Metal-Ion Batteries: Progress and Opportunities.
    Li W; Kheimeh Sari HM; Li X
    ChemSusChem; 2020 Mar; 13(6):1172-1202. PubMed ID: 31777162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries.
    Sun B; Xiong P; Maitra U; Langsdorf D; Yan K; Wang C; Janek J; Schröder D; Wang G
    Adv Mater; 2020 May; 32(18):e1903891. PubMed ID: 31599999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnTe/rGO Composite as the Fully Zinced Conversion-Type Cathodes for Aqueous Zinc Ion Batteries.
    Yi S; Si R; Su Y; Bao W; Guo C; Li J
    Chemistry; 2023 Feb; 29(12):e202203339. PubMed ID: 36458959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow CoS/C Structures for High-Performance Li, Na, K Ion Batteries.
    Liu Y; Li X; Zhang F; Zhang L; Zhang T; Li C; Jin Z; Wu Y; Du Z; Jiao H; Jiang Y; Yan Y; Li Q; Kong W
    Front Chem; 2022; 10():845742. PubMed ID: 35360542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti
    Pan L; Hu R; Zhang Y; Sha D; Cao X; Li Z; Zhao Y; Ding J; Wang Y; Sun Z
    Nanomicro Lett; 2023 Oct; 15(1):225. PubMed ID: 37831299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MXenes for Rechargeable Batteries Beyond the Lithium-Ion.
    Ming F; Liang H; Huang G; Bayhan Z; Alshareef HN
    Adv Mater; 2021 Jan; 33(1):e2004039. PubMed ID: 33217103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnSe Modified Zinc Metal Anodes: Toward Enhanced Zincophilicity and Ionic Diffusion.
    Li TC; Lim YV; Xie X; Li XL; Li G; Fang D; Li Y; Ang YS; Ang LK; Yang HY
    Small; 2021 Sep; 17(35):e2101728. PubMed ID: 34278715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length dependence thermal conductivity of zinc selenide (ZnSe) and zinc telluride (ZnTe) - a combined first principles and frequency domain thermoreflectance (FDTR) study.
    Muthaiah R; Annam RS; Tarannum F; Gupta AK; Garg J; Arafin S
    Phys Chem Chem Phys; 2022 Dec; 24(47):28814-28824. PubMed ID: 36416288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Nanostructured Metal Chalcogenides as Cathode Materials for Rechargeable Magnesium Batteries.
    Regulacio MD; Nguyen DT; Horia R; Seh ZW
    Small; 2021 Jun; 17(25):e2007683. PubMed ID: 33893714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage.
    Zhang Y; Zhang L; Lv T; Chu PK; Huo K
    ChemSusChem; 2020 Mar; 13(6):1114-1154. PubMed ID: 32150349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities.
    Wang Y; Chu F; Zeng J; Wang Q; Naren T; Li Y; Cheng Y; Lei Y; Wu F
    ACS Nano; 2021 Jan; 15(1):210-239. PubMed ID: 33405889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlayer-Spacing-Regulated VOPO
    Zhou L; Liu Q; Zhang Z; Zhang K; Xiong F; Tan S; An Q; Kang YM; Zhou Z; Mai L
    Adv Mater; 2018 Aug; 30(32):e1801984. PubMed ID: 29939435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage.
    Wang YX; Lai WH; Wang YX; Chou SL; Ai X; Yang H; Cao Y
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18324-18337. PubMed ID: 31087486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.