These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35789595)

  • 1. From pandemic to a new normal: Strategies to optimise governmental interventions in Indonesia based on an SVEIQHR-type mathematical model.
    Yong B; Hoseana J; Owen L
    Infect Dis Model; 2022 Sep; 7(3):346-363. PubMed ID: 35789595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia.
    Aldila D; Khoshnaw SHA; Safitri E; Anwar YR; Bakry ARQ; Samiadji BM; Anugerah DA; Gh MFA; Ayulani ID; Salim SN
    Chaos Solitons Fractals; 2020 Oct; 139():110042. PubMed ID: 32834600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pandemic fatigue impact on COVID-19 spread: A mathematical modelling answer to the Italian scenario.
    Meacci L; Primicerio M
    Results Phys; 2021 Dec; 31():104895. PubMed ID: 34722137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies.
    Mahadhika CK; Aldila D
    Math Biosci Eng; 2024 Mar; 21(4):4956-4988. PubMed ID: 38872522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of COVID-19 transmission: the roles of intervention strategies and lockdown.
    Bugalia S; Bajiya VP; Tripathi JP; Li MT; Sun GQ
    Math Biosci Eng; 2020 Sep; 17(5):5961-5986. PubMed ID: 33120585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multicompartment mathematical model to study the dynamic behaviour of COVID-19 using vaccination as control parameter.
    Kurmi S; Chouhan U
    Nonlinear Dyn; 2022; 109(3):2185-2201. PubMed ID: 35730024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mathematical model for prioritization of individuals to receive vaccine considering governmental health protocols.
    Shamsi Gamchi N; Esmaeili M
    Eur J Health Econ; 2023 Jun; 24(4):633-646. PubMed ID: 35900675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a two-strain epidemic mathematical model with vaccination.
    Yaagoub Z; Danane J; Allali K
    Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):632-650. PubMed ID: 37018044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation.
    Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J
    Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the dynamic of COVID-19 with different types of transmissions.
    Amouch M; Karim N
    Chaos Solitons Fractals; 2021 Sep; 150():111188. PubMed ID: 34183873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Mathematical Model of COVID-19 with Vaccination and Treatment.
    Diagne ML; Rwezaura H; Tchoumi SY; Tchuenche JM
    Comput Math Methods Med; 2021; 2021():1250129. PubMed ID: 34497662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of the spread of the coronavirus under strict social restrictions.
    Al-Arydah M; Berhe H; Dib K; Madhu K
    Math Methods Appl Sci; 2021 Nov; ():. PubMed ID: 34908636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of early detection and vaccination strategy in COVID-19 eradication program in Jakarta, Indonesia.
    Aldila D; Samiadji BM; Simorangkir GM; Khosnaw SHA; Shahzad M
    BMC Res Notes; 2021 Apr; 14(1):132. PubMed ID: 33845887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the impact of vaccination in a COVID-19 compartmental model.
    Esteban EP; Almodovar-Abreu L
    Inform Med Unlocked; 2021; 27():100795. PubMed ID: 34816000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a Fractional-Order Delayed Model of COVID-19 with Vaccination Efficacy.
    Rihan FA; Kandasamy U; Alsakaji HJ; Sottocornola N
    Vaccines (Basel); 2023 Mar; 11(4):. PubMed ID: 37112670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model based study on the dynamics of COVID-19: Prediction and control.
    Mandal M; Jana S; Nandi SK; Khatua A; Adak S; Kar TK
    Chaos Solitons Fractals; 2020 Jul; 136():109889. PubMed ID: 32406395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling on COVID-19 control with double and booster-dose vaccination.
    Kalra P; Ali S; Ocen S
    Gene; 2024 Nov; 928():148795. PubMed ID: 39097207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand.
    Riyapan P; Shuaib SE; Intarasit A
    Comput Math Methods Med; 2021; 2021():6664483. PubMed ID: 33815565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan.
    Ndaïrou F; Area I; Nieto JJ; Torres DFM
    Chaos Solitons Fractals; 2020 Jun; 135():109846. PubMed ID: 32341628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRSi-vaccine dynamical model for the Covid-19 pandemic.
    Batistela CM; Correa DPF; Bueno ÁM; Piqueira JRC
    ISA Trans; 2023 Aug; 139():391-405. PubMed ID: 37217378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.