These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35789986)

  • 1. Production of Blending Quality Bioethanol from Broken Rice: Optimization of Process Parameters and Kinetic Modeling.
    Mondal P; Sadhukhan AK; Ganguly A; Gupta P
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5474-5505. PubMed ID: 35789986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of process parameters for bio-enzymatic and enzymatic saccharification of waste broken rice for ethanol production using response surface methodology and artificial neural network-genetic algorithm.
    Mondal P; Sadhukhan AK; Ganguly A; Gupta P
    3 Biotech; 2021 Jan; 11(1):28. PubMed ID: 33442526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.
    Wei P; Si Z; Lu Y; Yu Q; Huang L; Xu Z
    Prep Biochem Biotechnol; 2017 Aug; 47(7):709-719. PubMed ID: 28448745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice.
    Myburgh MW; Cripwell RA; Favaro L; van Zyl WH
    Bioresour Technol; 2019 Dec; 294():122222. PubMed ID: 31683453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of bioethanol from multiple waste streams of rice milling.
    Favaro L; Cagnin L; Basaglia M; Pizzocchero V; van Zyl WH; Casella S
    Bioresour Technol; 2017 Nov; 244(Pt 1):151-159. PubMed ID: 28779666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach.
    Dave N; Varadavenkatesan T; Selvaraj R; Vinayagam R
    Sci Total Environ; 2021 Oct; 791():148429. PubMed ID: 34412402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV
    Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of bioethanol from four species of duckweeds (
    Faizal A; Sembada AA; Priharto N
    Saudi J Biol Sci; 2021 Jan; 28(1):294-301. PubMed ID: 33424309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and optimization of photo-fermentation biohydrogen production from co-substrates basing on response surface methodology and artificial neural network integrated genetic algorithm.
    Zhang X; Zhang Q; Li Y; Zhang H
    Bioresour Technol; 2023 Apr; 374():128789. PubMed ID: 36842512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.
    Soliman RM; Younis SA; El-Gendy NS; Mostafa SSM; El-Temtamy SA; Hashim AI
    J Appl Microbiol; 2018 Aug; 125(2):422-440. PubMed ID: 29675837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.
    Hafid HS; Nor 'Aini AR; Mokhtar MN; Talib AT; Baharuddin AS; Umi Kalsom MS
    Waste Manag; 2017 Sep; 67():95-105. PubMed ID: 28527863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial consolidated bioprocessing of pretreated Pennisetum sp. by anaerobic thermophiles for enhanced bioethanol production.
    Mohapatra S; Jena S; Jena PK; Badhai J; Acharya AN; Thatoi H
    Chemosphere; 2020 Oct; 256():127126. PubMed ID: 32470736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production.
    Cheng N; Koda K; Tamai Y; Yamamoto Y; Takasuka TE; Uraki Y
    Bioresour Technol; 2017 May; 232():126-132. PubMed ID: 28214699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol Production from
    Kim SK; Nguyen CM; Ko EH; Kim IC; Kim JS; Kim JC
    J Microbiol Biotechnol; 2017 Jun; 27(6):1112-1119. PubMed ID: 28372036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential modelling for carbohydrate and bioethanol production from Chlorella saccharophila CCALA 258: a complementary experimental and theoretical approach for microalgal bioethanol production.
    Onay M
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14316-14332. PubMed ID: 34608581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification.
    Kumar V; Chhabra D; Shukla P
    Bioresour Technol; 2017 Nov; 243():1009-1019. PubMed ID: 28764103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization andfermentation optimization.
    Chatterjee S; Venkata Mohan S
    Bioresour Technol; 2021 Nov; 340():125650. PubMed ID: 34426236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol.
    Gupta R; Kumar S; Gomes J; Kuhad RC
    Biotechnol Biofuels; 2012 Mar; 5():16. PubMed ID: 22433563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel lime pretreatment for subsequent bioethanol production from rice straw--calcium capturing by carbonation (CaCCO) process.
    Park JY; Shiroma R; Al-Haq MI; Zhang Y; Ike M; Arai-Sanoh Y; Ida A; Kondo M; Tokuyasu K
    Bioresour Technol; 2010 Sep; 101(17):6805-11. PubMed ID: 20382526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae.
    Singh S; Chakravarty I; Kundu S
    Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):83-87. PubMed ID: 28968215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.