These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 35790172)

  • 1. Optimal policies for mitigating pandemic costs: a tutorial model.
    Serra M; Al-Mosleh S; Ganga Prasath S; Raju V; Mantena S; Chandra J; Iams S; Mahadevan L
    Phys Biol; 2022 Aug; 19(5):. PubMed ID: 35790172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep reinforcement learning framework for controlling infectious disease outbreaks in the context of multi-jurisdictions.
    Khatami SN; Gopalappa C
    Math Biosci Eng; 2023 Jun; 20(8):14306-14326. PubMed ID: 37679137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Metric of Societal Burden Based on Virus Succession to Determine Economic Losses and Health Benefits of China's Lockdown Policies: Model Development and Validation.
    Chen W; Zhang B; Wang C; An W; Guruge SK; Chui HK; Yang M
    JMIR Public Health Surveill; 2024 Jun; 10():e48043. PubMed ID: 38848555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Public Perceptions Of COVID-19 Lockdown Policies In Europe: Socioeconomic Status And Trust Were Factors.
    Falk L; Neumann-Böhme S; Sabat I; Schreyögg J
    Health Aff (Millwood); 2023 Dec; 42(12):1706-1714. PubMed ID: 38048510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the heterogeneous impact of lockdown policies on different socioeconomic classes during the first COVID-19 wave in Colombia.
    Valgañón P; Useche AF; Soriano-Paños D; Ghoshal G; Gómez-Gardeñes J
    Sci Rep; 2023 Sep; 13(1):16481. PubMed ID: 37777581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exit strategies from lockdowns due to COVID-19: a scoping review.
    Misra M; Joshi H; Sarwal R; Rao KD
    BMC Public Health; 2022 Mar; 22(1):488. PubMed ID: 35279102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple criterion to design optimal non-pharmaceutical interventions for mitigating epidemic outbreaks.
    Angulo MT; Castaños F; Moreno-Morton R; Velasco-Hernández JX; Moreno JA
    J R Soc Interface; 2021 May; 18(178):20200803. PubMed ID: 33975462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship among state reopening policies, health outcomes and economic recovery through first wave of the COVID-19 pandemic in the U.S.
    Ligo AK; Mahoney E; Cegan J; Trump BD; Jin AS; Kitsak M; Keenan J; Linkov I
    PLoS One; 2021; 16(11):e0260015. PubMed ID: 34793504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Term Effects of Short-Term Work: Dynamics in Fatigue Across Two National Lockdowns.
    Rauvola RS; Rudolph CW; Zacher H
    J Occup Environ Med; 2022 Jul; 64(7):550-556. PubMed ID: 35543648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal control in pandemics.
    Samuel J; Sinha S
    Phys Rev E; 2021 Jan; 103(1):L010301. PubMed ID: 33601567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the economic impacts of COVID-19 policy responses on Canada's provinces in (almost) real time.
    Cotton C; Kashi B; Lloyd-Ellis H; Tremblay F; Crowley B
    Can J Econ; 2022 Feb; 55(Suppl 1):406-445. PubMed ID: 38607897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease control as an optimization problem.
    Navascués M; Budroni C; Guryanova Y
    PLoS One; 2021; 16(9):e0257958. PubMed ID: 34591897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A control theory approach to optimal pandemic mitigation.
    Godara P; Herminghaus S; Heidemann KM
    PLoS One; 2021; 16(2):e0247445. PubMed ID: 33606802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal.
    Silva CJ; Cruz C; Torres DFM; Muñuzuri AP; Carballosa A; Area I; Nieto JJ; Fonseca-Pinto R; Passadouro R; Santos ESD; Abreu W; Mira J
    Sci Rep; 2021 Feb; 11(1):3451. PubMed ID: 33568716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Signature Features of COVID-19 Pandemic in a Hybrid Mathematical Model-Implications for Optimal Work-School Lockdown Policy.
    Lazebnik T; Bunimovich-Mendrazitsky S
    Adv Theory Simul; 2021 May; 4(5):2000298. PubMed ID: 34230906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disease-dependent interaction policies to support health and economic outcomes during the COVID-19 epidemic.
    Li G; Shivam S; Hochberg ME; Wardi Y; Weitz JS
    iScience; 2021 Jul; 24(7):102710. PubMed ID: 34127957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease-dependent interaction policies to support health and economic outcomes during the COVID-19 epidemic.
    Li G; Shivam S; Hochberg ME; Wardi Y; Weitz JS
    medRxiv; 2020 Sep; ():. PubMed ID: 32909010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Socioeconomic reorganization of communication and mobility networks in response to external shocks.
    Napoli L; Sekara V; García-Herranz M; Karsai M
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2305285120. PubMed ID: 38060564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chasing up and locking down the virus: Optimal pandemic interventions within a network.
    Freiberger M; Grass D; Kuhn M; Seidl A; Wrzaczek S
    J Public Econ Theory; 2022 Jun; ():. PubMed ID: 35942308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal lockdowns for COVID-19 pandemics: Analyzing the efficiency of sanitary policies in Europe.
    Gallic E; Lubrano M; Michel P
    J Public Econ Theory; 2021 Nov; ():. PubMed ID: 34908826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.