BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 35790374)

  • 1. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer.
    Kalinina EV; Gavriliuk LA; Pokrovsky VS
    Biochemistry (Mosc); 2022 May; 87(5):413-424. PubMed ID: 35790374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative
    Ray SK; Jayashankar E; Kotnis A; Mukherjee S
    Curr Mol Med; 2024; 24(2):205-216. PubMed ID: 36892117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation in cancer: a double-edged sword with therapeutic potential.
    Acharya A; Das I; Chandhok D; Saha T
    Oxid Med Cell Longev; 2010; 3(1):23-34. PubMed ID: 20716925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Selenium compounds in redox regulation of inflammation and apoptosis].
    Rusetskaya NY; Fedotov IV; Koftina VA; Borodulin VB
    Biomed Khim; 2019 Apr; 65(3):165-179. PubMed ID: 31258141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells.
    Xu Y; Fang F; Miriyala S; Crooks PA; Oberley TD; Chaiswing L; Noel T; Holley AK; Zhao Y; Kiningham KK; Clair DK; Clair WH
    Cancer Res; 2013 Jul; 73(14):4406-17. PubMed ID: 23674500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.
    Marengo B; Nitti M; Furfaro AL; Colla R; Ciucis CD; Marinari UM; Pronzato MA; Traverso N; Domenicotti C
    Oxid Med Cell Longev; 2016; 2016():6235641. PubMed ID: 27418953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases.
    Singh A; Kukreti R; Saso L; Kukreti S
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.
    He L; He T; Farrar S; Ji L; Liu T; Ma X
    Cell Physiol Biochem; 2017; 44(2):532-553. PubMed ID: 29145191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways.
    Szarka A; Lőrincz T; Hajdinák P
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.
    Sies H; Jones DP
    Nat Rev Mol Cell Biol; 2020 Jul; 21(7):363-383. PubMed ID: 32231263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (Review).
    Liu R; Bian Y; Liu L; Liu L; Liu X; Ma S
    Int J Mol Med; 2022 May; 49(5):. PubMed ID: 35293589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics.
    Paschos A; Pandya R; Duivenvoorden WC; Pinthus JH
    Prostate Cancer Prostatic Dis; 2013 Sep; 16(3):217-25. PubMed ID: 23670256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.
    Ray PD; Huang BW; Tsuji Y
    Cell Signal; 2012 May; 24(5):981-90. PubMed ID: 22286106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sigma1 Regulates Lipid Droplet-mediated Redox Homeostasis Required for Prostate Cancer Proliferation.
    Oyer HM; Steck AR; Longen CG; Venkat S; Bayrak K; Munger EB; Fu D; Castagnino PA; Sanders CM; Tancler NA; Mai MT; Myers JP; Schiewer MJ; Chen N; Mostaghel EA; Kim FJ
    Cancer Res Commun; 2023 Oct; 3(10):2195-2210. PubMed ID: 37874216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidants and HNE in redox homeostasis.
    Łuczaj W; Gęgotek A; Skrzydlewska E
    Free Radic Biol Med; 2017 Oct; 111():87-101. PubMed ID: 27888001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.