These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35790618)

  • 1. Mechanistic Study on the Effect of Renal Impairment on the Pharmacokinetics of Vildagliptin and its Carboxylic Acid Metabolite.
    Guo Z; Kong F; Xie N; Chen Z; Hu J; Chen X
    Pharm Res; 2022 Sep; 39(9):2147-2162. PubMed ID: 35790618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased Plasma Exposures of Conjugated Metabolites of Morinidazole in Renal Failure Patients: A Critical Role of Uremic Toxins.
    Kong F; Pang X; Zhong K; Guo Z; Li X; Zhong D; Chen X
    Drug Metab Dispos; 2017 Jun; 45(6):593-603. PubMed ID: 28314825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of uremic toxin transport by organic anion transporters in the kidney.
    Deguchi T; Kusuhara H; Takadate A; Endou H; Otagiri M; Sugiyama Y
    Kidney Int; 2004 Jan; 65(1):162-74. PubMed ID: 14675047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney.
    Deguchi T; Ohtsuki S; Otagiri M; Takanaga H; Asaba H; Mori S; Terasaki T
    Kidney Int; 2002 May; 61(5):1760-8. PubMed ID: 11967025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.
    Asakura M; Fujii H; Atsuda K; Itoh T; Fujiwara R
    Drug Metab Dispos; 2015 Apr; 43(4):477-84. PubMed ID: 25597851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans.
    He H; Tran P; Yin H; Smith H; Batard Y; Wang L; Einolf H; Gu H; Mangold JB; Fischer V; Howard D
    Drug Metab Dispos; 2009 Mar; 37(3):536-44. PubMed ID: 19074975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disposition of vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in rats and dogs.
    He H; Tran P; Yin H; Smith H; Flood D; Kramp R; Filipeck R; Fischer V; Howard D
    Drug Metab Dispos; 2009 Mar; 37(3):545-54. PubMed ID: 19074976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatic Dipeptidyl Peptidase-4 Controls Pharmacokinetics of Vildagliptin In Vivo.
    Asakura M; Fukami T; Nakajima M; Fujii H; Atsuda K; Itoh T; Fujiwara R
    Drug Metab Dispos; 2017 Feb; 45(2):237-245. PubMed ID: 27895112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical pharmacokinetics and pharmacodynamics of vildagliptin.
    He YL
    Clin Pharmacokinet; 2012 Mar; 51(3):147-62. PubMed ID: 22339447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in vivo renal uptake of uremic toxins in rats.
    Deguchi T; Kouno Y; Terasaki T; Takadate A; Otagiri M
    Pharm Res; 2005 Apr; 22(4):619-27. PubMed ID: 15846470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal disposition of a furan dicarboxylic acid and other uremic toxins in the rat.
    Tsutsumi Y; Deguchi T; Takano M; Takadate A; Lindup WE; Otagiri M
    J Pharmacol Exp Ther; 2002 Nov; 303(2):880-7. PubMed ID: 12388676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for SN-38, an active metabolite of irinotecan, in humans.
    Fujita K; Sugiura T; Okumura H; Umeda S; Nakamichi N; Watanabe Y; Suzuki H; Sunakawa Y; Shimada K; Kawara K; Sasaki Y; Kato Y
    Pharm Res; 2014 Jan; 31(1):204-15. PubMed ID: 23921491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacokinetics of vildagliptin in patients with varying degrees of renal impairment.
    He YL; Kulmatycki K; Zhang Y; Zhou W; Reynolds C; Ligueros-Saylan M; Taylor A
    Int J Clin Pharmacol Ther; 2013 Sep; 51(9):693-703. PubMed ID: 23782585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain.
    Ohtsuki S; Asaba H; Takanaga H; Deguchi T; Hosoya K; Otagiri M; Terasaki T
    J Neurochem; 2002 Oct; 83(1):57-66. PubMed ID: 12358729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells.
    Asakura M; Karaki F; Fujii H; Atsuda K; Itoh T; Fujiwara R
    Sci Rep; 2016 Oct; 6():35633. PubMed ID: 27759084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A furan fatty acid and indoxyl sulfate are the putative inhibitors of thyroxine hepatocyte transport in uremia.
    Lim CF; Bernard BF; de Jong M; Docter R; Krenning EP; Hennemann G
    J Clin Endocrinol Metab; 1993 Feb; 76(2):318-24. PubMed ID: 8432774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indoxyl sulfate down-regulates SLCO4C1 transporter through up-regulation of GATA3.
    Akiyama Y; Kikuchi K; Saigusa D; Suzuki T; Takeuchi Y; Mishima E; Yamamoto Y; Ishida A; Sugawara D; Jinno D; Shima H; Toyohara T; Suzuki C; Souma T; Moriguchi T; Tomioka Y; Ito S; Abe T
    PLoS One; 2013; 8(7):e66518. PubMed ID: 23874392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney.
    Miyamoto Y; Watanabe H; Noguchi T; Kotani S; Nakajima M; Kadowaki D; Otagiri M; Maruyama T
    Nephrol Dial Transplant; 2011 Aug; 26(8):2498-502. PubMed ID: 21303967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of organic anion transporters in the efflux of uremic toxins across the blood-brain barrier.
    Deguchi T; Isozaki K; Yousuke K; Terasaki T; Otagiri M
    J Neurochem; 2006 Feb; 96(4):1051-9. PubMed ID: 16445853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats.
    Guo X; Meng Q; Liu Q; Wang C; Sun H; Peng J; Ma X; Kaku T; Liu K
    Toxicol Appl Pharmacol; 2013 Sep; 271(2):285-95. PubMed ID: 23707770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.