These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35790756)

  • 1. Resolving missing protein problems using functional class scoring.
    Wong BJH; Kong W; Wong L; Goh WWB
    Sci Rep; 2022 Jul; 12(1):11358. PubMed ID: 35790756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deeper investigation into the utility of functional class scoring in missing protein prediction from proteomics data.
    Zhao Y; Sue AC; Goh WWB
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950013. PubMed ID: 31057071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PROTREC: A probability-based approach for recovering missing proteins based on biological networks.
    Kong W; Wong BJH; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB
    J Proteomics; 2022 Jan; 250():104392. PubMed ID: 34626823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project.
    Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK
    J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated Protein Biomarker Discovery from FFPE Tissue Samples Using Single-Shot, Short Gradient Microflow SWATH MS.
    Sun R; Hunter C; Chen C; Ge W; Morrice N; Liang S; Zhu T; Yuan C; Ruan G; Zhang Q; Cai X; Yu X; Chen L; Dai S; Luan Z; Aebersold R; Zhu Y; Guo T
    J Proteome Res; 2020 Jul; 19(7):2732-2741. PubMed ID: 32053377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced bioinformatics methods for practical applications in proteomics.
    Goh WWB; Wong L
    Brief Bioinform; 2019 Jan; 20(1):347-355. PubMed ID: 30657890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole cell, label free protein quantitation with data independent acquisition: quantitation at the MS2 level.
    McQueen P; Spicer V; Schellenberg J; Krokhin O; Sparling R; Levin D; Wilkins JA
    Proteomics; 2015 Jan; 15(1):16-24. PubMed ID: 25348682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry.
    Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM
    Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Networks and Proteomics: Moving Forward.
    Goh WWB; Wong L
    Trends Biotechnol; 2016 Dec; 34(12):951-959. PubMed ID: 27312055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses.
    Wang S; Li W; Hu L; Cheng J; Yang H; Liu Y
    Nucleic Acids Res; 2020 Aug; 48(14):e83. PubMed ID: 32526036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation.
    Matafora V; Corno A; Ciliberto A; Bachi A
    J Proteome Res; 2017 Apr; 16(4):1719-1727. PubMed ID: 28282139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the Relationship Between Mass Window Width and Retention Time Scheduling on Protein Coverage for Data-Independent Acquisition.
    Li W; Chi H; Salovska B; Wu C; Sun L; Rosenberger G; Liu Y
    J Am Soc Mass Spectrom; 2019 Aug; 30(8):1396-1405. PubMed ID: 31147889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.
    Goh WW; Wong L
    J Proteome Res; 2016 Sep; 15(9):3167-79. PubMed ID: 27454466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Missing Value Monitoring to Address Missing Values in Quantitative Proteomics.
    Matafora V; Bachi A
    Methods Mol Biol; 2021; 2228():401-408. PubMed ID: 33950505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction.
    Ortea I; Rodríguez-Ariza A; Chicano-Gálvez E; Arenas Vacas MS; Jurado Gámez B
    J Proteomics; 2016 Apr; 138():106-14. PubMed ID: 26917472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-independent Acquisition Mass Spectrometry.
    Parker SJ; Rost H; Rosenberger G; Collins BC; Malmström L; Amodei D; Venkatraman V; Raedschelders K; Van Eyk JE; Aebersold R
    Mol Cell Proteomics; 2015 Oct; 14(10):2800-13. PubMed ID: 26199342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice.
    Goh WW; Sergot MJ; Sng JC; Wong L
    J Proteome Res; 2013 May; 12(5):2116-27. PubMed ID: 23557376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectra-first feature analysis in clinical proteomics - A case study in renal cancer.
    Goh WW; Wong L
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644004. PubMed ID: 27806684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.