These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35790978)

  • 1. Neural correlates of user learning during long-term BCI training for the Cybathlon competition.
    Tortora S; Beraldo G; Bettella F; Formaggio E; Rubega M; Del Felice A; Masiero S; Carli R; Petrone N; Menegatti E; Tonin L
    J Neuroeng Rehabil; 2022 Jul; 19(1):69. PubMed ID: 35790978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.
    Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F
    Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.
    Perdikis S; Tonin L; Saeedi S; Schneider C; Millán JDR
    PLoS Biol; 2018 May; 16(5):e2003787. PubMed ID: 29746465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competing at the Cybathlon championship for people with disabilities: long-term motor imagery brain-computer interface training of a cybathlete who has tetraplegia.
    Korik A; McCreadie K; McShane N; Du Bois N; Khodadadzadeh M; Stow J; McElligott J; Carroll Á; Coyle D
    J Neuroeng Rehabil; 2022 Sep; 19(1):95. PubMed ID: 36068570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Mutual Training for the CYBATHLON BCI Race With a Tetraplegic Pilot: A Case Study on Inter-Session Transfer and Intra-Session Adaptation.
    Hehenberger L; Kobler RJ; Lopes-Dias C; Srisrisawang N; Tumfart P; Uroko JB; Torke PR; Müller-Putz GR
    Front Hum Neurosci; 2021; 15():635777. PubMed ID: 33716698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Considerations for Long Term Non-invasive Brain Computer Interface Training With Tetraplegic CYBATHLON Pilot.
    Robinson N; Chouhan T; Mihelj E; Kratka P; Debraine F; Wenderoth N; Guan C; Lehner R
    Front Hum Neurosci; 2021; 15():648275. PubMed ID: 34211380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of user training methods in brain computer interfaces based on mental tasks.
    Roc A; Pillette L; Mladenovic J; Benaroch C; N'Kaoua B; Jeunet C; Lotte F
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33181488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training.
    Ivanov N; Chau T
    Front Comput Neurosci; 2023; 17():1108889. PubMed ID: 36860616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long Multi-Stage Training for a Motor-Impaired User in a BCI Competition.
    Turi F; Clerc M; Papadopoulo T
    Front Hum Neurosci; 2021; 15():647908. PubMed ID: 33841120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.
    Statthaler K; Schwarz A; Steyrl D; Kobler R; Höller MK; Brandstetter J; Hehenberger L; Bigga M; Müller-Putz G
    J Neuroeng Rehabil; 2017 Dec; 14(1):129. PubMed ID: 29282131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised adaptation of an ECoG based brain-computer interface using neural correlates of task performance.
    Rouanne V; Costecalde T; Benabid AL; Aksenova T
    Sci Rep; 2022 Dec; 12(1):21316. PubMed ID: 36494390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.
    Jeunet C; N'Kaoua B; Subramanian S; Hachet M; Lotte F
    PLoS One; 2015; 10(12):e0143962. PubMed ID: 26625261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control.
    Padfield N; Camilleri K; Camilleri T; Fabri S; Bugeja M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardization of protocol design for user training in EEG-based brain-computer interface.
    Mladenović J
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33217745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.