BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35791016)

  • 1. Enhancement of critical-sized bone defect regeneration using UiO-66 nanomaterial in rabbit femurs.
    Sadek AA; Abd-Elkareem M; Abdelhamid HN; Moustafa S; Hussein K
    BMC Vet Res; 2022 Jul; 18(1):260. PubMed ID: 35791016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of critical-sized bone defects in rabbit femurs using graphitic carbon nitride (g-C
    Sadek AA; Abd-Elkareem M; Abdelhamid HN; Moustafa S; Hussein K
    Sci Rep; 2023 Apr; 13(1):5404. PubMed ID: 37012344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications.
    Jarai BM; Stillman Z; Attia L; Decker GE; Bloch ED; Fromen CA
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38989-39004. PubMed ID: 32805901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S53P4 bioactive glass scaffolds induce BMP expression and integrative bone formation in a critical-sized diaphysis defect treated with a single-staged induced membrane technique.
    Eriksson E; Björkenheim R; Strömberg G; Ainola M; Uppstu P; Aalto-Setälä L; Leino VM; Hupa L; Pajarinen J; Lindfors NC
    Acta Biomater; 2021 May; 126():463-476. PubMed ID: 33774197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decellularized Periosteum-Covered Chitosan Globule Composite for Bone Regeneration in Rabbit Femur Condyle Bone Defects.
    Ye Y; Pang Y; Zhang Z; Wu C; Jin J; Su M; Pan J; Liu Y; Chen L; Jin K
    Macromol Biosci; 2018 Sep; 18(9):e1700424. PubMed ID: 29931763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits.
    Levingstone TJ; Thompson E; Matsiko A; Schepens A; Gleeson JP; O'Brien FJ
    Acta Biomater; 2016 Mar; 32():149-160. PubMed ID: 26724503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino-Functionalized Zirconium-Based Metal-Organic Frameworks as Bifunctional Nanomaterials to Treat Bone Tumors and Promote Osteogenesis.
    Yuan J; Zeng Y; Pan Z; Feng Z; Bao Y; Ye Z; Li Y; Tang J; Liu X; He Y
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53217-53227. PubMed ID: 37943099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect.
    Perumal G; Ramasamy B; Nandkumar A M; Dhanasekaran S; Ramasamy S; Doble M
    Nanomedicine; 2020 Oct; 29():102232. PubMed ID: 32562860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H
    Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli-derived BMP-2-absorbed β-TCP granules induce bone regeneration in rabbit critical-sized femoral segmental defects.
    Kuroiwa Y; Niikura T; Lee SY; Oe K; Iwakura T; Fukui T; Matsumoto T; Matsushita T; Nishida K; Kuroda R
    Int Orthop; 2019 May; 43(5):1247-1253. PubMed ID: 30097727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UiO-66 metal-organic framework as a double actor in chitosan scaffolds: Antibiotic carrier and osteogenesis promoter.
    Karakeçili A; Topuz B; Ersoy FŞ; Şahin T; Günyakti A; Demirtaş TT
    Biomater Adv; 2022 May; 136():212757. PubMed ID: 35929303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of rabbit femoral defects with a novel BMP2-derived oligopeptide P24.
    Duan Z; Zheng Q; Guo X; Li C; Wu B; Wu W
    J Huazhong Univ Sci Technolog Med Sci; 2008 Aug; 28(4):426-30. PubMed ID: 18704304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects.
    Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE
    J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α-hemihydrate calcium sulfate/octacalcium phosphate combined with sodium hyaluronate promotes bone marrow-derived mesenchymal stem cell osteogenesis in vitro and in vivo.
    Chen C; Zhu C; Hu X; Yu Q; Zheng Q; Tao S; Fan L
    Drug Des Devel Ther; 2018; 12():3269-3287. PubMed ID: 30323560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.