These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 35791524)

  • 41. Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China.
    Guo X; Fu L; Ji M; Lang J; Chen D; Cheng S
    Environ Pollut; 2016 Sep; 216():470-479. PubMed ID: 27325548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Coordinated Control of Carbon Emission Reduction and Air Quality Improvement in the Industrial Sector in Hunan Province].
    Li N; Liu WW; Zhu SH; Xing XW; Tang KQ; Wang SW; Bai L
    Huan Jing Ke Xue; 2024 Mar; 45(3):1274-1284. PubMed ID: 38471844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact assessment of vehicle electrification pathways on emissions of CO
    Duan S; Qiu Z; Liu Z; Liu L
    Sci Total Environ; 2023 Oct; 893():164856. PubMed ID: 37327892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Air pollution emission effects of changes in transport supply: the case of Bogotá, Colombia.
    Mangones SC; Jaramillo P; Rojas NY; Fischbeck P
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):35971-35978. PubMed ID: 32221836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon emissions from road transportation in China: from past to the future.
    Teng W; Zhang Q; Guo Z; Ying G; Zhao J
    Environ Sci Pollut Res Int; 2024 Jul; 31(35):48048-48061. PubMed ID: 39017878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates.
    Isik M; Dodder R; Kaplan PO
    Nat Energy; 2021 Jan; 6():92-104. PubMed ID: 34804594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-road vehicle emissions and their control in China: A review and outlook.
    Wu Y; Zhang S; Hao J; Liu H; Wu X; Hu J; Walsh MP; Wallington TJ; Zhang KM; Stevanovic S
    Sci Total Environ; 2017 Jan; 574():332-349. PubMed ID: 27639470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental impact of national and subnational carbon policies in China based on a multi-regional dynamic CGE model.
    Zhang WW; Zhao B; Gu Y; Sharp B; Xu SC; Liou KN
    J Environ Manage; 2020 Sep; 270():110901. PubMed ID: 32721336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China.
    Chen A; You S; Liu H; Zhu J; Peng X
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-carbon energy policies benefit climate change mitigation and air pollutant reduction in megacities: An empirical examination of Shenzhen, China.
    Jiang J; Ye B; Sun Z; Zeng Z; Yang X
    Sci Total Environ; 2023 Sep; 892():164644. PubMed ID: 37271396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Health benefits of decreases in on-road transportation emissions in the United States from 2008 to 2017.
    Choma EF; Evans JS; Gómez-Ibáñez JA; Di Q; Schwartz JD; Hammitt JK; Spengler JD
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vehicle mix evaluation in Beijing's passenger-car sector: From air pollution control perspective.
    Guo JX; Zeng Y; Zhu K; Tan X
    Sci Total Environ; 2021 Sep; 785():147264. PubMed ID: 33940404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact and Interactions of Policies for Mitigation of Air Pollutants and Greenhouse Gas Emissions in Korea.
    Oh I; Yoo WJ; Yoo Y
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30935125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Relationships between settlement morphology transition and residents commuting energy consumption].
    Zhou J; Xiao RB; Sun X
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):1977-84. PubMed ID: 24175530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Greenhouse gas emissions and peak trend of commercial vehicles in China.
    Wang X; Dai M; Wang W; Gao Y; Qi T; Dong X; Ren P; Ding N
    J Environ Manage; 2023 Apr; 331():117262. PubMed ID: 36731334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Vehicle Emission Inventory and Scenario Analysis in Liaoning from 2000 to 2030].
    Jin JX; Sun SD; Wang P; Lin YC; Wang T; Wu L; Wei N; Chang JY; Mao HJ
    Huan Jing Ke Xue; 2020 Feb; 41(2):665-673. PubMed ID: 32608725
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trends in onroad transportation energy and emissions.
    Frey HC
    J Air Waste Manag Assoc; 2018 Jun; 68(6):514-563. PubMed ID: 29589998
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Global scenarios of air pollutant emissions from road transport through to 2050.
    Takeshita T
    Int J Environ Res Public Health; 2011 Jul; 8(7):3032-62. PubMed ID: 21845172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trade-Offs between Direct Emission Reduction and Intersectoral Additional Emissions: Evidence from the Electrification Transition in China's Transport Sector.
    Wang Z; Zhang H; Wang B; Li H; Ma J; Zhang B; Zhuge C; Shan Y
    Environ Sci Technol; 2023 Aug; 57(31):11389-11400. PubMed ID: 37343129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emissions from the road transport sector of New Zealand: key drivers and challenges.
    Hasan MA; Frame DJ; Chapman R; Archie KM
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23937-23957. PubMed ID: 31222652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.