BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35792242)

  • 1. Inhibition of the carnitine acylcarnitine carrier by carbon monoxide reveals a novel mechanism of action with non-metal-containing proteins.
    Tonazzi A; Giangregorio N; Console L; Calvano CD; Prejanò M; Scalise M; Incampo G; Marino T; Russo N; Cataldi TRI; Indiveri C
    Free Radic Biol Med; 2022 Aug; 188():395-403. PubMed ID: 35792242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme is required for carbon monoxide activation of mitochondrial BK
    Rotko D; Bednarczyk P; Koprowski P; Kunz WS; Szewczyk A; Kulawiak B
    Eur J Pharmacol; 2020 Aug; 881():173191. PubMed ID: 32422186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo'' to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-acetylcysteine reduces CO-RM uptake and inhibition of respiration.
    Jesse HE; Nye TL; McLean S; Green J; Mann BE; Poole RK
    Biochim Biophys Acta; 2013 Sep; 1834(9):1693-703. PubMed ID: 23624261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier.
    Long R; Salouage I; Berdeaux A; Motterlini R; Morin D
    Biochim Biophys Acta; 2014 Jan; 1837(1):201-9. PubMed ID: 24161358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the Mitochondrial Carnitine/Acylcarnitine Carrier by Itaconate through Irreversible Binding to Cysteine 136: Possible Pathophysiological Implications.
    Giangregorio N; Tonazzi A; Console L; Scalise M; Indiveri C
    Biomolecules; 2023 Jun; 13(6):. PubMed ID: 37371573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species.
    Lo Iacono L; Boczkowski J; Zini R; Salouage I; Berdeaux A; Motterlini R; Morin D
    Free Radic Biol Med; 2011 Jun; 50(11):1556-64. PubMed ID: 21382478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs.
    Tonazzi A; Giangregorio N; Console L; Palmieri F; Indiveri C
    Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33807231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.
    Giangregorio N; Palmieri F; Indiveri C
    Biochim Biophys Acta; 2013 Nov; 1830(11):5299-304. PubMed ID: 23948593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mycotoxin Patulin Inhibits the Mitochondrial Carnitine/Acylcarnitine Carrier (SLC25A20) by Interaction with Cys136 Implications for Human Health.
    Giangregorio N; Tonazzi A; Calvano CD; Pierri CL; Incampo G; Cataldi TRI; Indiveri C
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136.
    Tonazzi A; Giangregorio N; Console L; De Palma A; Indiveri C
    Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):475-482. PubMed ID: 28438511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of frequently applied carbon monoxide releasing molecules (CORMs) in typical CO-sensitive model systems - A comparative in vitro study.
    Stucki D; Krahl H; Walter M; Steinhausen J; Hommel K; Brenneisen P; Stahl W
    Arch Biochem Biophys; 2020 Jul; 687():108383. PubMed ID: 32335048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of inhibition of the mitochondrial carnitine/acylcarnitine transporter by omeprazole revealed by proteoliposome assay, mutagenesis and bioinformatics.
    Tonazzi A; Eberini I; Indiveri C
    PLoS One; 2013; 8(12):e82286. PubMed ID: 24349247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial carnitine/acylcarnitine carrier is regulated by hydrogen sulfide via interaction with C136 and C155.
    Giangregorio N; Tonazzi A; Console L; Lorusso I; De Palma A; Indiveri C
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt A):20-7. PubMed ID: 26459002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle.
    Taillé C; El-Benna J; Lanone S; Boczkowski J; Motterlini R
    J Biol Chem; 2005 Jul; 280(27):25350-60. PubMed ID: 15863496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide-releasing molecule-2 ameliorates postresuscitation myocardial dysfunction in rat via mitochondrial-mediated apoptosis pathway and the regulation of mitochondrial dynamics.
    Liu M; Du F; Liu F; Wang XH
    Eur J Pharmacol; 2022 Jul; 927():175038. PubMed ID: 35605656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry.
    Rana N; McLean S; Mann BE; Poole RK
    Microbiology (Reading); 2014 Dec; 160(Pt 12):2771-2779. PubMed ID: 25085864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli.
    Wilson JL; Wareham LK; McLean S; Begg R; Greaves S; Mann BE; Sanguinetti G; Poole RK
    Antioxid Redox Signal; 2015 Jul; 23(2):148-62. PubMed ID: 25811604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli.
    Wilson JL; Jesse HE; Hughes B; Lund V; Naylor K; Davidge KS; Cook GM; Mann BE; Poole RK
    Antioxid Redox Signal; 2013 Aug; 19(5):497-509. PubMed ID: 23186316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels.
    Jaggar JH; Li A; Parfenova H; Liu J; Umstot ES; Dopico AM; Leffler CW
    Circ Res; 2005 Oct; 97(8):805-12. PubMed ID: 16166559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO-independent modification of K
    Gessner G; Sahoo N; Swain SM; Hirth G; Schönherr R; Mede R; Westerhausen M; Brewitz HH; Heimer P; Imhof D; Hoshi T; Heinemann SH
    Eur J Pharmacol; 2017 Nov; 815():33-41. PubMed ID: 28987271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.