These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 35792307)
1. The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Riching KM; Caine EA; Urh M; Daniels DL Chem Soc Rev; 2022 Jul; 51(14):6210-6221. PubMed ID: 35792307 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Live-Cell Kinetic Degradation and Mechanistic Profiling of PROTAC Mode of Action. Riching KM; Mahan S; Corona CR; McDougall M; Vasta JD; Robers MB; Urh M; Daniels DL ACS Chem Biol; 2018 Sep; 13(9):2758-2770. PubMed ID: 30137962 [TBL] [Abstract][Full Text] [Related]
3. Kinetic Detection of E3:PROTAC:Target Ternary Complexes Using NanoBRET Technology in Live Cells. Mahan SD; Riching KM; Urh M; Daniels DL Methods Mol Biol; 2021; 2365():151-171. PubMed ID: 34432243 [TBL] [Abstract][Full Text] [Related]
4. Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate targeting by PROTACs and molecular glues. Ramachandran S; Ciulli A Curr Opin Struct Biol; 2021 Apr; 67():110-119. PubMed ID: 33271439 [TBL] [Abstract][Full Text] [Related]
5. Targeted protein degradation: Emerging concepts and protein state-specific targeting principles. Tao AJ; Gadbois GE; Buczynski SA; Ferguson FM Curr Opin Chem Biol; 2022 Apr; 67():102114. PubMed ID: 35042023 [TBL] [Abstract][Full Text] [Related]
6. Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency. Chaudhry C J Med Chem; 2023 May; 66(9):6239-6250. PubMed ID: 37102218 [TBL] [Abstract][Full Text] [Related]
7. Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Cowan AD; Ciulli A Annu Rev Biochem; 2022 Jun; 91():295-319. PubMed ID: 35320687 [TBL] [Abstract][Full Text] [Related]
8. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization. Schwalm MP; Krämer A; Dölle A; Weckesser J; Yu X; Jin J; Saxena K; Knapp S Cell Chem Biol; 2023 Jul; 30(7):753-765.e8. PubMed ID: 37354907 [TBL] [Abstract][Full Text] [Related]
9. Monitoring and deciphering protein degradation pathways inside cells. Daniels DL; Riching KM; Urh M Drug Discov Today Technol; 2019 Apr; 31():61-68. PubMed ID: 31200861 [TBL] [Abstract][Full Text] [Related]
10. A Tale of Two Tails: Efficient Profiling of Protein Degraders by Specific Functional and Target Engagement Readouts. Chernobrovkin AL; Cázares-Körner C; Friman T; Caballero IM; Amadio D; Martinez Molina D SLAS Discov; 2021 Apr; 26(4):534-546. PubMed ID: 33445986 [TBL] [Abstract][Full Text] [Related]
11. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel-Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. Zoppi V; Hughes SJ; Maniaci C; Testa A; Gmaschitz T; Wieshofer C; Koegl M; Riching KM; Daniels DL; Spallarossa A; Ciulli A J Med Chem; 2019 Jan; 62(2):699-726. PubMed ID: 30540463 [TBL] [Abstract][Full Text] [Related]
12. E3 ligase ligand chemistries: from building blocks to protein degraders. Sosič I; Bricelj A; Steinebach C Chem Soc Rev; 2022 May; 51(9):3487-3534. PubMed ID: 35393989 [TBL] [Abstract][Full Text] [Related]
13. Advancing targeted protein degrader discovery by measuring cereblon engagement in cells. Zerfas BL; Huerta F; Liu H; Du G; Gray NS; Jones LH; Nowak RP Methods Enzymol; 2023; 681():169-188. PubMed ID: 36764756 [TBL] [Abstract][Full Text] [Related]