These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35792808)

  • 1. Enhanced volatile fatty acid production from food waste via anaerobic fermentation: effect of irons with different sizes.
    Zhao Y; Wei R; He D; Niu D; Zhou T
    Environ Technol; 2024 Jan; 45(1):50-60. PubMed ID: 35792808
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation.
    Cao J; Zhang Q; Wu S; Luo J; Wu Y; Zhang L; Feng Q; Fang F; Xue Z
    Sci Total Environ; 2019 Jun; 669():540-546. PubMed ID: 30889443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge.
    Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D
    Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile fatty acid production in anaerobic fermentation of food waste saccharified residue: Effect of substrate concentration.
    Wang Q; Zhang G; Chen L; Yang N; Wu Y; Fang W; Zhang R; Wang X; Fu C; Zhang P
    Waste Manag; 2023 Jun; 164():29-36. PubMed ID: 37023642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation.
    Qin W; Han S; Meng F; Chen K; Gao Y; Li J; Lin L; Hu E; Jiang J
    Sci Total Environ; 2024 Feb; 912():168764. PubMed ID: 38000740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts of microbial community and metabolic function during food wastes and waste activated sludge co-fermentation in semi-continuous-flow reactors: Effects of fermentation substrate and zero-valent iron.
    Zhang Q; Cao J; Wu Y; Zhao J; Guo W; Huang W; Feng Q; Fang F; Aleem M; Luo J
    Bioresour Technol; 2020 Oct; 313():123686. PubMed ID: 32570079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH.
    Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.
    Yesil H; Tugtas AE; Bayrakdar A; Calli B
    Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and mechanisms of zero valent iron enhancing short-chain fatty acids production during thermophilic anaerobic fermentation of waste activated sludge.
    Ding W; Fan X; Zhou X; Liu R; Chen C; Jin W; Sun J; Li X; Jiang G; Liu H
    Sci Total Environ; 2024 Feb; 912():169025. PubMed ID: 38056647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.
    Luo J; Feng L; Chen Y; Li X; Chen H; Xiao N; Wang D
    J Biotechnol; 2014 Oct; 187():98-105. PubMed ID: 25093934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe
    Wang L; Lei Z; Yang X; Zhang C; Liu C; Shimizu K; Zhang Z; Yuan T
    Bioresour Technol; 2022 Nov; 364():128097. PubMed ID: 36229010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time.
    Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z
    Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici.
    Li X; Mu H; Chen Y; Zheng X; Luo J; Zhao S
    Water Sci Technol; 2013; 68(9):2061-6. PubMed ID: 24225109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes.
    Yesil H; Calli B; Tugtas AE
    Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sewage denitrification performance and sludge properties variation with the addition of liquid from perishable organic anaerobic fermentation.
    Zhu Z; Guo Y; Zhao Y; Zhang R; Yu Y; Zhang M; Zhou T
    Bioresour Technol; 2021 Dec; 341():125821. PubMed ID: 34523552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation.
    Zhang Q; Lu Y; Zhou X; Wang X; Zhu J
    Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector.
    Rasi S; Vainio M; Blasco L; Kahala M; Leskinen H; Tampio E
    J Environ Manage; 2022 Apr; 308():114640. PubMed ID: 35124316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.
    Khiewwijit R; Keesman KJ; Rijnaarts H; Temmink H
    Bioresour Technol; 2015 Oct; 193():150-5. PubMed ID: 26133471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.