These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35792823)

  • 1. An archetype of the electron-unobstructed core-shell composite with inherent selectivity: conductive metal-organic frameworks encapsulated with metal nanoparticles.
    Si X; Zhao H; Yi B; Zhou L; Ling Y; An Y; Wang Y; Lee HK; Tsung CK; Ma Y; Chou LY
    Nanoscale; 2022 Jul; 14(27):9655-9660. PubMed ID: 35792823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal-Organic Frameworks via Site-Specific Nucleation.
    Park C; Koo WT; Chong S; Shin H; Kim YH; Cho HJ; Jang JS; Kim DH; Lee J; Park S; Ko J; Kim J; Kim ID
    Adv Mater; 2021 Sep; 33(38):e2101216. PubMed ID: 34342046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Growth of Conductive Metal-Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors.
    Lu J; Duan H; Zhang Y; Zhang G; Chen Z; Song Y; Zhu R; Pang H
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25878-25885. PubMed ID: 35618261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-Fe Alloy/N-Doped Carbon Hollow Spheres Derived from Dual Metal-Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction.
    Zhang SL; Guan BY; Lou XWD
    Small; 2019 Mar; 15(13):e1805324. PubMed ID: 30748105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Soft Porosity and Electrical Properties of Conductive-on-Insulating Metal-Organic Framework Nanocrystals.
    Yao MS; Otake KI; Zheng J; Tsujimoto M; Gu YF; Zheng L; Wang P; Mohana S; Bonneau M; Koganezawa T; Honma T; Ashitani H; Kawaguchi S; Kubota Y; Kitagawa S
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202303903. PubMed ID: 37211927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH
    Shan Z; Xiao JZ; Wu M; Wang J; Su J; Yao MS; Lu M; Wang R; Zhang G
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202401679. PubMed ID: 38389160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Hierarchically Porous Nanoparticles@Metal-Organic Frameworks Composites by Inherent Defects for the Enhancement of Catalytic Efficiency.
    Meng F; Zhang S; Ma L; Zhang W; Li M; Wu T; Li H; Zhang T; Lu X; Huo F; Lu J
    Adv Mater; 2018 Dec; 30(49):e1803263. PubMed ID: 30368945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Conductive Metal-Organic Frameworks Based on Truxene.
    Zhao Q; Li SH; Chai RL; Ren X; Zhang C
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7504-7509. PubMed ID: 31965783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.
    Ge X; Li Z; Wang C; Yin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal-Organic Frameworks, Metal Nanoparticles, and Micro- and Mesoporous Polymers.
    Yuan K; Song T; Wang D; Zhang X; Gao X; Zou Y; Dong H; Tang Z; Hu W
    Angew Chem Int Ed Engl; 2018 May; 57(20):5708-5713. PubMed ID: 29509302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spherical Sandwich Au@Pd@UIO-67/Pt@UIO- n ( n = 66, 67, 69) Core-Shell Catalysts: Zr-Based Metal-Organic Frameworks for Effectively Regulating the Reverse Water-Gas Shift Reaction.
    Xu H; Luo X; Wang J; Su Y; Zhao X; Li Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20291-20297. PubMed ID: 31070880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Atom Catalysts in Conductive Metal-Organic Frameworks: Enabling Reversible Gas Sensing at Room Temperature.
    Park C; Shin H; Jeon M; Cho SH; Kim J; Kim ID
    ACS Nano; 2024 Sep; ():. PubMed ID: 39219106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Localization of Metal Nanoparticles in Yolk-Shell MOFs for Enhancing Catalytic Performance in Selective Hydrogenation of Cinnamaldehyde.
    Zhou A; Dou Y; Zhou J; Li JR
    ChemSusChem; 2020 Jan; 13(1):205-211. PubMed ID: 31556474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms.
    Yao MS; Otake KI; Koganezawa T; Ogasawara M; Asakawa H; Tsujimoto M; Xue ZQ; Li YH; Flanders NC; Wang P; Gu YF; Honma T; Kawaguchi S; Kubota Y; Kitagawa S
    Proc Natl Acad Sci U S A; 2023 Oct; 120(40):e2305125120. PubMed ID: 37748051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co
    Zhao X; Xu H; Wang X; Zheng Z; Xu Z; Ge J
    ACS Appl Mater Interfaces; 2018 May; 10(17):15096-15103. PubMed ID: 29641173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core-Shells on Nanosheets: Co@CoOx@Carbon-rGO Composites for Enhanced Hydrogen Generation Activity.
    Xing C; Liu Y; Su Y; Chen Y; Hao S; Wu X; Wang X; Cao H; Li B
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15430-8. PubMed ID: 27243608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.
    Zhang S; Hao Y; Su D; Doan-Nguyen VV; Wu Y; Li J; Sun S; Murray CB
    J Am Chem Soc; 2014 Nov; 136(45):15921-4. PubMed ID: 25350678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.