These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35793082)

  • 1. Graphene-Coated Halloysite Nanoclay Membrane for the Enhanced Separation of Hydrogen from a Hydrogen-Helium Mixture.
    Dutta S; Das N
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32444-32456. PubMed ID: 35793082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-layer graphene membranes by crack-free transfer for gas mixture separation.
    Huang S; Dakhchoune M; Luo W; Oveisi E; He G; Rezaei M; Zhao J; Alexander DTL; Züttel A; Strano MS; Agrawal KV
    Nat Commun; 2018 Jul; 9(1):2632. PubMed ID: 29980683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoration of green synthesized S, N-GQDs and CoFe
    Ghiyasiyan-Arani M; Salavati-Niasari M
    Sci Rep; 2022 May; 12(1):8103. PubMed ID: 35577885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity.
    Huang A; Liu Q; Wang N; Zhu Y; Caro J
    J Am Chem Soc; 2014 Oct; 136(42):14686-9. PubMed ID: 25290574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness.
    Ashirov T; Yazaydin AO; Coskun A
    Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous germanene as a highly efficient gas separation membrane.
    Bian A; Dai Y; Yang J
    Nanoscale; 2017 Nov; 9(44):17505-17512. PubMed ID: 29110006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.
    Zhao J; He G; Huang S; Villalobos LF; Dakhchoune M; Bassas H; Agrawal KV
    Sci Adv; 2019 Jan; 5(1):eaav1851. PubMed ID: 30746475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercaptoundecanoic acid capped palladium nanoparticles in a SAPO 34 membrane: a solution for enhancement of H₂/CO₂ separation efficiency.
    Das JK; Das N
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20717-28. PubMed ID: 25353317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H
    Sen M; Dana K; Das N
    Ultrason Sonochem; 2018 Nov; 48():299-310. PubMed ID: 30080554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor.
    Oyama ST; Aono H; Takagaki A; Sugawara T; Kikuchi R
    Membranes (Basel); 2020 Mar; 10(3):. PubMed ID: 32235698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.
    Esfandiarpoor S; Fazli M; Ganji MD
    Sci Rep; 2017 Nov; 7(1):16561. PubMed ID: 29185458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extremely permeable porous graphene with high H
    Shimizu K; Ohba T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18201-18207. PubMed ID: 28675236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.