BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35793264)

  • 1. Combining GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia symbiosis.
    Epstein B; Burghardt LT; Heath KD; Grillo MA; Kostanecki A; Hämälä T; Young ND; Tiffin P
    Mol Ecol; 2023 Jul; 32(14):3798-3811. PubMed ID: 35793264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype.
    Burghardt LT; Epstein B; Hoge M; Trujillo DI; Tiffin P
    Appl Environ Microbiol; 2022 Aug; 88(15):e0052622. PubMed ID: 35852362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism.
    Burghardt LT; Guhlin J; Chun CL; Liu J; Sadowsky MJ; Stupar RM; Young ND; Tiffin P
    Mol Ecol; 2017 Nov; 26(21):6122-6135. PubMed ID: 28792680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes.
    Epstein B; Tiffin P
    Proc Biol Sci; 2021 Jan; 288(1942):20201804. PubMed ID: 33402066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An emerging view of coevolution in the legume-rhizobium mutualism.
    Carlson C; Frederickson ME
    Mol Ecol; 2023 Jul; 32(14):3793-3797. PubMed ID: 37350376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a dominant gene in Medicago truncatula that restricts nodulation by Sinorhizobium meliloti strain Rm41.
    Liu J; Yang S; Zheng Q; Zhu H
    BMC Plant Biol; 2014 Jun; 14():167. PubMed ID: 24934080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negotiating mutualism: A locus for exploitation by rhizobia has a broad effect size distribution and context-dependent effects on legume hosts.
    Wendlandt CE; Roberts M; Nguyen KT; Graham ML; Lopez Z; Helliwell EE; Friesen ML; Griffitts JS; Price P; Porter SS
    J Evol Biol; 2022 Jun; 35(6):844-854. PubMed ID: 35506571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.
    Gorton AJ; Heath KD; Pilet-Nayel ML; Baranger A; Stinchcombe JR
    G3 (Bethesda); 2012 Nov; 2(11):1291-303. PubMed ID: 23173081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of symbiont preference traits in the model legume Medicago truncatula.
    Batstone RT; Dutton EM; Wang D; Yang M; Frederickson ME
    New Phytol; 2017 Mar; 213(4):1850-1861. PubMed ID: 27864973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Select and Resequence Approach Reveals Strain-Specific Effects of
    Burghardt LT; Trujillo DI; Epstein B; Tiffin P; Young ND
    Plant Physiol; 2020 Jan; 182(1):463-471. PubMed ID: 31653715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Legacy of prior host and soil selection on rhizobial fitness in planta.
    Burghardt LT; Epstein B; Tiffin P
    Evolution; 2019 Sep; 73(9):2013-2023. PubMed ID: 31334838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Germin-Like Protein GLP1 of Legumes Mediates Symbiotic Nodulation by Interacting with an Outer Membrane Protein of Rhizobia.
    Zeng X; Li D; Lv Y; Lu Y; Mei L; Zhou D; Chen D; Xie F; Lin H; Li Y
    Microbiol Spectr; 2023 Feb; 11(1):e0335022. PubMed ID: 36633436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Association Studies across Environmental and Genetic Contexts Reveal Complex Genetic Architecture of Symbiotic Extended Phenotypes.
    Batstone RT; Lindgren H; Allsup CM; Goralka LA; Riley AB; Grillo MA; Marshall-Colon A; Heath KD
    mBio; 2022 Dec; 13(6):e0182322. PubMed ID: 36286519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis.
    Grillo MA; Stinchcombe JR; Heath KD
    Am J Bot; 2016 Oct; 103(10):1763-1770. PubMed ID: 27671532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt Stress Enhances Early Symbiotic Gene Expression in
    Chakraborty S; Driscoll HE; Abrahante JE; Zhang F; Fisher RF; Harris JM
    Mol Plant Microbe Interact; 2021 Aug; 34(8):904-921. PubMed ID: 33819071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the coevolutionary dynamics of mutualism with population genomics.
    Yoder JB
    Am J Bot; 2016 Oct; 103(10):1742-1752. PubMed ID: 27756732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A newly evolved chimeric lysin motif receptor-like kinase in Medicago truncatula spp. tricycla R108 extends its Rhizobia symbiotic partnership.
    Luu TB; Ourth A; Pouzet C; Pauly N; Cullimore J
    New Phytol; 2022 Sep; 235(5):1995-2007. PubMed ID: 35611584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic and genomic signatures of interspecies cooperation and conflict in naturally occurring isolates of a model plant symbiont.
    Batstone RT; Burghardt LT; Heath KD
    Proc Biol Sci; 2022 Jul; 289(1978):20220477. PubMed ID: 35858063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.