These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35793300)

  • 1. Permute Me Softly: Learning Soft Permutations for Graph Representations.
    Nikolentzos G; Dasoulas G; Vazirgiannis M
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):5087-5098. PubMed ID: 35793300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. k-hop graph neural networks.
    Nikolentzos G; Dasoulas G; Vazirgiannis M
    Neural Netw; 2020 Oct; 130():195-205. PubMed ID: 32682085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Representation Learning in Graph Neural Networks With Node Decimation Pooling.
    Bianchi FM; Grattarola D; Livi L; Alippi C
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2195-2207. PubMed ID: 33382662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalization limits of Graph Neural Networks in identity effects learning.
    D'Inverno GA; Brugiapaglia S; Ravanelli M
    Neural Netw; 2025 Jan; 181():106793. PubMed ID: 39426036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSA-GNN: An augmented GNN framework with priori subgraph knowledge.
    Xue G; Zhong M; Qian T; Li J
    Neural Netw; 2024 May; 173():106155. PubMed ID: 38335793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.
    Bouritsas G; Frasca F; Zafeiriou S; Bronstein MM
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):657-668. PubMed ID: 35201983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing collective structure knowledge in data augmentation for graph neural networks.
    Ma R; Pang G; Chen L
    Neural Netw; 2024 Dec; 180():106651. PubMed ID: 39217862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weisfeiler-Lehman goes dynamic: An analysis of the expressive power of Graph Neural Networks for attributed and dynamic graphs.
    Beddar-Wiesing S; D'Inverno GA; Graziani C; Lachi V; Moallemy-Oureh A; Scarselli F; Thomas JM
    Neural Netw; 2024 May; 173():106213. PubMed ID: 38428377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localities.
    Itoh TD; Kubo T; Ikeda K
    Neural Netw; 2022 Jan; 145():356-373. PubMed ID: 34808587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attributed Multi-Order Graph Convolutional Network for Heterogeneous Graphs.
    Chen Z; Wu Z; Zhong L; Plant C; Wang S; Guo W
    Neural Netw; 2024 Jun; 174():106225. PubMed ID: 38471260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph Transformer Networks: Learning meta-path graphs to improve GNNs.
    Yun S; Jeong M; Yoo S; Lee S; Yi SS; Kim R; Kang J; Kim HJ
    Neural Netw; 2022 Sep; 153():104-119. PubMed ID: 35716619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SP-GNN: Learning structure and position information from graphs.
    Chen Y; You J; He J; Lin Y; Peng Y; Wu C; Zhu Y
    Neural Netw; 2023 Apr; 161():505-514. PubMed ID: 36805265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentially Private Graph Neural Networks for Whole-Graph Classification.
    Mueller TT; Paetzold JC; Prabhakar C; Usynin D; Rueckert D; Kaissis G
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7308-7318. PubMed ID: 37015371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MGLNN: Semi-supervised learning via Multiple Graph Cooperative Learning Neural Networks.
    Jiang B; Chen S; Wang B; Luo B
    Neural Netw; 2022 Sep; 153():204-214. PubMed ID: 35750007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCP-GNN: Competitive Covariance Pooling for Improving Graph Neural Networks.
    Zhu P; Li J; Dong Z; Hu Q; Wang X; Wang Q
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38683705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Molecular Representations Via Graph Transformation Layers.
    Ren GP; Wu KJ; He Y
    J Chem Inf Model; 2023 May; 63(9):2679-2688. PubMed ID: 37104828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Aligned Vertex Convolutional Networks for Graph Classification.
    Cui L; Bai L; Bai X; Wang Y; Hancock ER
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4423-4437. PubMed ID: 34890333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization.
    Dornaika F; Bi J; Zhang C
    Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.