These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 35793366)
1. Machine learning techniques for forecasting agricultural prices: A case of brinjal in Odisha, India. Paul RK; Yeasin M; Kumar P; Kumar P; Balasubramanian M; Roy HS; Paul AK; Gupta A PLoS One; 2022; 17(7):e0270553. PubMed ID: 35793366 [TBL] [Abstract][Full Text] [Related]
2. Recurrent neural network architecture for forecasting banana prices in Gujarat, India. Kumari P; Goswami V; N H; Pundir RS PLoS One; 2023; 18(6):e0275702. PubMed ID: 37319281 [TBL] [Abstract][Full Text] [Related]
3. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
4. A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices. Wang L; Xia Y; Lu Y Comput Intell Neurosci; 2022; 2022():4952215. PubMed ID: 36045986 [TBL] [Abstract][Full Text] [Related]
5. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
6. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
7. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707 [No Abstract] [Full Text] [Related]
8. A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh. Noorunnahar M; Chowdhury AH; Mila FA PLoS One; 2023; 18(3):e0283452. PubMed ID: 36972270 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study. Sudarshan VK; Brabrand M; Range TM; Wiil UK Comput Biol Med; 2021 Aug; 135():104541. PubMed ID: 34166880 [TBL] [Abstract][Full Text] [Related]
10. Improvement of Time Forecasting Models Using Machine Learning for Future Pandemic Applications Based on COVID-19 Data 2020-2022. K Abdul Hamid AA; Wan Mohamad Nawi WIA; Lola MS; Mustafa WA; Abdul Malik SM; Zakaria S; Aruchunan E; Zainuddin NH; Gobithaasan RU; Abdullah MT Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980429 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China. Li X; Zhang X Environ Sci Pollut Res Int; 2023 Nov; 30(55):117485-117502. PubMed ID: 37867169 [TBL] [Abstract][Full Text] [Related]
12. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
13. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China. Wei W; Jiang J; Liang H; Gao L; Liang B; Huang J; Zang N; Liao Y; Yu J; Lai J; Qin F; Su J; Ye L; Chen H PLoS One; 2016; 11(6):e0156768. PubMed ID: 27258555 [TBL] [Abstract][Full Text] [Related]
14. A New Hybrid Model Using an Autoregressive Integrated Moving Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, China. Wei W; Jiang J; Gao L; Liang B; Huang J; Zang N; Ning C; Liao Y; Lai J; Yu J; Qin F; Chen H; Su J; Ye L; Liang H Am J Trop Med Hyg; 2017 Sep; 97(3):799-805. PubMed ID: 28820678 [TBL] [Abstract][Full Text] [Related]
15. Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach. Ye GH; Alim M; Guan P; Huang DS; Zhou BS; Wu W PLoS One; 2021; 16(3):e0248597. PubMed ID: 33725011 [TBL] [Abstract][Full Text] [Related]
16. A hybrid model for forecasting of particulate matter concentrations based on multiscale characterization and machine learning techniques. Ali Shah SA; Aziz W; Almaraashi M; Ahmed Nadeem MS; Habib N; Shim SO Math Biosci Eng; 2021 Mar; 18(3):1992-2009. PubMed ID: 33892534 [TBL] [Abstract][Full Text] [Related]
17. Using meta-learning to recommend an appropriate time-series forecasting model. Talkhi N; Akhavan Fatemi N; Jabbari Nooghabi M; Soltani E; Jabbari Nooghabi A BMC Public Health; 2024 Jan; 24(1):148. PubMed ID: 38200512 [TBL] [Abstract][Full Text] [Related]
18. Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India. Singh PK; Pandey AK; Ahuja S; Kiran R Environ Sci Pollut Res Int; 2022 Apr; 29(17):25461-25472. PubMed ID: 34841483 [TBL] [Abstract][Full Text] [Related]
19. Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study. Cheng HY; Wu YC; Lin MH; Liu YL; Tsai YY; Wu JH; Pan KH; Ke CJ; Chen CM; Liu DP; Lin IF; Chuang JH J Med Internet Res; 2020 Aug; 22(8):e15394. PubMed ID: 32755888 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]